Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA discovery promises to improve drugs used to fight cancer, other diseases

14.01.2013
Even when at rest, the human body is a flurry of activity. Like a microscopic metropolis locked in a state of perpetual rush hour traffic, the trillions of cells that make us who we are work feverishly policing the streets, making repairs, building new structures and delivering important cargo throughout the bustling organic society.
For everything to work properly there must be something to organize and direct the various workers. Enter protein kinases. Like specialized traffic signals, this huge class of proteins is critical for many aspects of cell communication, telling them when to begin work and when to stop.

Now, University of Georgia researchers have discovered that a little-studied part of the protein kinases that once appeared non-functional may actually control the most critical functions of the entire molecule. Their research promises to help improve drugs used to fight a variety of life-threatening diseases, from diabetes to cancer.

"The overall goal of this project was to better understand how these proteins function and what mechanisms control their function," said Natarajan Kannan, a Georgia Cancer Coalition Distinguished Scholar and assistant professor of biochemistry and molecular biology in the Franklin College of Arts and Sciences. "Our research shows that these little-studied dark regions of the protein are directly affecting the molecule's function."

Normally functioning protein kinases perform duties central to the everyday cellular operations within our bodies, but when they become dysfunctional, they can play a major role in the development of numerous serious diseases, including Alzheimer's, diabetes, cardiovascular disease and many forms of cancer.

Scientists have recognized the value of the proteins as therapeutic targets for decades, and numerous drugs, known as protein kinase inhibitors, are commonly prescribed in an attempt to slow or stop the rogue kinases that cause disease. The UGA team hopes its discovery will not only lead to new therapies but also help improve those already in existence.

"This opens a new front on the battle against many diseases, particularly cancer," said Krishnadev Oruganty, a postdoctoral research associate in biochemistry and molecular biology and lead author of a paper detailing the discovery published on Dec. 31 in the early edition of the Proceedings of the National Academy of Sciences USA.

Developing entirely new drugs is an extraordinarily lengthy and expensive process, but this new understanding of how protein kinases switch between "on" and "off" states will make it possible for researchers to modify existing drugs to make them perform better without significant investment.

"These are a very important class of proteins for biomedical industries, and the pharmaceutical industry has already invested billions of dollars in drugs that target these proteins," said Kannan, who is part of the UGA Cancer Center and the Institute of Bioinformatics. "This discovery will have a huge impact on how pharmaceutical companies develop drugs, because subtle modifications of these drugs will make it easier to control them, which will boost their effectiveness."

Kannan and the interdisciplinary team of UGA researchers working on the project are already beginning to design drugs that can selectively inhibit the rogue proteins that cause disease, but they caution that more research is needed to perfect their approach.

Nevertheless, they are confident that this discovery will have a profound impact on the pharmaceutical industry, and on the understanding of the elementary components of life.

"Every fundamental signaling pathway in our cells is controlled by these proteins," Kannan said. "Gaining a deeper understanding of how these kinases work will open doors to a myriad of important new discoveries."

UGA Cancer Center
The University of Georgia Cancer Center is composed of more than 40 teams of researchers from across campus working to discover new drug targets, develop diagnostic tests, create cancer vaccines, and educate the public about cancer treatment and prevention. The center is also committed to educating undergraduate and graduate-level students who will become the next generation of cancer researchers and physicians. For more information on the UGA Cancer Center, see http://cancercenter.uga.edu.

UGA Institute of Bioinformatics
The University of Georgia Institute of Bioinformatics facilitates interactions and research collaborations between experimental biologists, technologists and computational/mathematical scientists to solve complex biological problems. Team members are actively conducting bioinformatics research on genomics, plant genomics, microbial genomics, biomedicine and cancer, pharmaceuticals, glycobiology and statistical sciences. The institute is also responsible for the computing support for campus wide bioinformatics research at UGA. See http://iob.uga.edu for more information.

Natarajan Kannan | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>