Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA discovery promises to improve drugs used to fight cancer, other diseases

14.01.2013
Even when at rest, the human body is a flurry of activity. Like a microscopic metropolis locked in a state of perpetual rush hour traffic, the trillions of cells that make us who we are work feverishly policing the streets, making repairs, building new structures and delivering important cargo throughout the bustling organic society.
For everything to work properly there must be something to organize and direct the various workers. Enter protein kinases. Like specialized traffic signals, this huge class of proteins is critical for many aspects of cell communication, telling them when to begin work and when to stop.

Now, University of Georgia researchers have discovered that a little-studied part of the protein kinases that once appeared non-functional may actually control the most critical functions of the entire molecule. Their research promises to help improve drugs used to fight a variety of life-threatening diseases, from diabetes to cancer.

"The overall goal of this project was to better understand how these proteins function and what mechanisms control their function," said Natarajan Kannan, a Georgia Cancer Coalition Distinguished Scholar and assistant professor of biochemistry and molecular biology in the Franklin College of Arts and Sciences. "Our research shows that these little-studied dark regions of the protein are directly affecting the molecule's function."

Normally functioning protein kinases perform duties central to the everyday cellular operations within our bodies, but when they become dysfunctional, they can play a major role in the development of numerous serious diseases, including Alzheimer's, diabetes, cardiovascular disease and many forms of cancer.

Scientists have recognized the value of the proteins as therapeutic targets for decades, and numerous drugs, known as protein kinase inhibitors, are commonly prescribed in an attempt to slow or stop the rogue kinases that cause disease. The UGA team hopes its discovery will not only lead to new therapies but also help improve those already in existence.

"This opens a new front on the battle against many diseases, particularly cancer," said Krishnadev Oruganty, a postdoctoral research associate in biochemistry and molecular biology and lead author of a paper detailing the discovery published on Dec. 31 in the early edition of the Proceedings of the National Academy of Sciences USA.

Developing entirely new drugs is an extraordinarily lengthy and expensive process, but this new understanding of how protein kinases switch between "on" and "off" states will make it possible for researchers to modify existing drugs to make them perform better without significant investment.

"These are a very important class of proteins for biomedical industries, and the pharmaceutical industry has already invested billions of dollars in drugs that target these proteins," said Kannan, who is part of the UGA Cancer Center and the Institute of Bioinformatics. "This discovery will have a huge impact on how pharmaceutical companies develop drugs, because subtle modifications of these drugs will make it easier to control them, which will boost their effectiveness."

Kannan and the interdisciplinary team of UGA researchers working on the project are already beginning to design drugs that can selectively inhibit the rogue proteins that cause disease, but they caution that more research is needed to perfect their approach.

Nevertheless, they are confident that this discovery will have a profound impact on the pharmaceutical industry, and on the understanding of the elementary components of life.

"Every fundamental signaling pathway in our cells is controlled by these proteins," Kannan said. "Gaining a deeper understanding of how these kinases work will open doors to a myriad of important new discoveries."

UGA Cancer Center
The University of Georgia Cancer Center is composed of more than 40 teams of researchers from across campus working to discover new drug targets, develop diagnostic tests, create cancer vaccines, and educate the public about cancer treatment and prevention. The center is also committed to educating undergraduate and graduate-level students who will become the next generation of cancer researchers and physicians. For more information on the UGA Cancer Center, see http://cancercenter.uga.edu.

UGA Institute of Bioinformatics
The University of Georgia Institute of Bioinformatics facilitates interactions and research collaborations between experimental biologists, technologists and computational/mathematical scientists to solve complex biological problems. Team members are actively conducting bioinformatics research on genomics, plant genomics, microbial genomics, biomedicine and cancer, pharmaceuticals, glycobiology and statistical sciences. The institute is also responsible for the computing support for campus wide bioinformatics research at UGA. See http://iob.uga.edu for more information.

Natarajan Kannan | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>