Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UF study shows some sharks follow 'mental map' to navigate seas

10.03.2011
A new study led by a University of Florida researcher uses tracking data of three shark species to provide the first evidence some of the fish swim directly to targeted locations.

Researchers found tiger and thresher sharks showed the ability to orient at large distances, with tiger sharks swimming in direct paths at least 4 miles away and reaching specific resource areas about 30 miles away, said lead author Yannis Papastamatiou, a marine biologist in the division of ichthyology at the Florida Museum of Natural History on the UF campus.

A research highlight of the study in the current edition of the Journal of Animal Ecology will appear in the Thursday issue of the journal Nature.

"This study is important because it uses quantitative methods to try to understand the underlying ecological reasons for animal movement," said Kevin Weng, a marine biologist at the University of Hawaii at Manoa. "Studies such as this one are stepping stones to achieving predictive skill for animal movement, and better understanding of navigation, population dynamics and ecology."

Papastamatiou said the study suggests the sharks have developed a 'mental map' of the area.

"There's been several studies that have shown that marine predators, like sharks, penguins, turtles and tunas, move using particular types of random walks, but there's going to be times when these animals don't move randomly," Papastamatiou said. "This study shows that at times sharks are able to orient to specific features, and in the case of tiger sharks, the distance over which they're performing those directed walks is likely larger than the distance of the immediate range of their sensory systems."

Researchers use the term "directed walk" to describe when a shark is moving toward a known goal rather than randomly swimming.

Researchers re-analyzed tracking data from acoustic transmitters on nine tiger sharks off the south shore of Oahu, Hawaii, in 1999, nine blacktip reef sharks in the lagoons of Palmyra Atoll in the Central Pacific Ocean in 2009, and 15 thresher sharks off the southern California coast in 2010. The animals were followed for at least seven hours and the statistical analysis determined whether the sharks were moving randomly or toward a known goal.

While tiger sharks have acute senses of sight, hearing and smell, their home range covers hundreds of square miles, including resource spots outside their sensory range. As bounce divers, they also almost continuously swim between the surface and about 250 to 330 feet below.

"At times these tiger sharks were swimming across a deep channel, open ocean, often at night," Papastamatiou said. "So the question is, 'What are they orienting to in such a seemingly featureless environment?' It really just highlights how impressive their navigation can be."

Researchers determined adult thresher sharks could orient at greater distances than juveniles, most likely because of their advanced development, Papastamatiou said. The study found blacktip reef sharks only traveled randomly, which has to do with their small home range compared to larger areas covered by thresher and tiger sharks.

Papastamatiou speculated the "mental map" the sharks create may have to do with their ability to sense magnetic fields.

"Probably the most interesting sense and still the most misunderstood is magnetic reception," Papastamatiou said. "There is an increasing amount of evidence that lots of, if not all animals, can to a certain degree detect magnetic fields. That is something that could potentially be used over very large distances because there are gradients in the earth's magnetic field and they could use those as landmarks — so even swimming through open ocean, which seems featureless to us, may not be featureless to sharks if they could detect these magnetic fields."

He said the research would potentially be useful for obtaining accurate population dispersal models for the sharks so that movement patterns can be predicted after changes caused by fishing or the relocation of prey.

Study co-authors include Daniel Cartamil of the University of California San Diego, Christopher Lowe of California State University Long Beach, Carl Meyer and Kim Holland of the University of Hawaii at Manoa and Brad Wetherbee of the University of Rhode Island.

Yannis Papastamatiou | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>