Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists discover inner workings of potent cancer drug

15.10.2010
A potent drug derived from an evergreen tree may soon save the lives of some patients with the deadliest form of breast cancer. According to the National Cancer Institute, breast cancer will claim approximately 40,000 lives in the U.S. this year.

Scientists at UC Santa Barbara, in cooperation with scientists in the pharmaceutical industry, have discovered the mechanism by which this drug kills cancer cells. The team has isolated the drug's action in the test tube as well as in cancer cells.

The results are reported in two studies published as the cover story of the October issue of Molecular Cancer Therapeutics, authored by a team of UCSB researchers. The articles feature work performed in the laboratories of Mary Ann Jordan and Leslie Wilson, professors in UCSB's Department of Cellular, Molecular and Developmental Biology.

"This anticancer drug, called maytansine, when linked to a tumor-targeting antibody, shows promising early results in clinical trials on patients with metastatic breast cancer," said Jordan. "Although the drug is not yet approved by the FDA, current clinical trials are open to new patients. And, the drug is being tested, with good results, on other cancers, such as multiple myeloma and B-cell lymphoma."

Early clinical trials show that the drug shrank the tumors of one-third of the patients in the breast cancer study –– a strong result, according to the authors. The studies explain that the drug works by targeting the microtubules of cancer cells. Microtubules are the dynamic, rapidly growing and shortening protein filaments that help cells to divide and multiply.

"We discovered how the drug is taken up into the tumor cells," said Jordan. "We found out that it is metabolized by the cancer cells, inhibits the dynamics of cellular microtubules, and thus blocks the mitosis of the spindles in the cells, causing them to die."

Manu Lopus, a postdoctoral fellow at UCSB and first author of the first article, demonstrated that the maytansinoid molecules act directly on the microtubules and their component tubulin. Emin Oroudjev, first author of the second article, demonstrated the course of action of the maytansinoids after they enter the cancer cells. "When microtubules lose their natural ability to grow and shorten, they can no longer execute their key functions that are crucial to successful mitosis, thus preventing the cancer cells from dividing, and prohibiting cancer cell proliferation," said Lopus.

The drug was previously considered too dangerous to use, because of its toxicity to non-cancer cells. However, the team was able to show that modifying the anticancer drug by adding an antibody caused the drug to target only cancer cells, greatly reducing its toxicity.

The new drug, when linked with the breast cancer-targeting antibody, is named trastuzumab-DM1. DM1 is a synthetic derivative of maytansine, a molecule found in an evergreen tree in the genera Maytenus, which grows on several continents.

For more information on clinical trials, co-author Ravi Chari, of the pharmaceutical company Immunogen Inc., in Cambridge, Mass., suggests that interested cancer patients consult the Immunogen, Inc. Web site: http://www.immunogen.com/wt/home/home.

"Sometimes people say that there is no progress in the fight against cancer," said Jordan. "But there is progress on many fronts. There are many smaller advances on specific cancers. Les Wilson and I have been collaborating for 32 years, and it is very exciting and satisfying to both of us that many cancer drugs that we've worked on that inhibit microtubule dynamics are becoming successful in the clinic and are helping people to live."

Lopus completed his Ph.D. in biotechnology at the Indian Institute of Technology in Bombay. The other first author, Emin Oroudjev, was a project scientist with the same research team at the time of the study. He received his Ph.D. from the Russian Academy of Science and now works in Santa Barbara at Bio SB.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

Further reports about: Cancer Immunogen Lopus Molecular Target UCSB breast cancer cancer cells cancer drug

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>