Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists find molecular differences between embryonic stem cells and reprogrammed skin cells

06.07.2009
UCLA researchers have found that embryonic stem cells and skin cells reprogrammed into embryonic-like cells have inherent molecular differences, demonstrating for the first time that the two cell types are clearly distinguishable from one another.

The data from the study suggest that embryonic stem cells and the reprogrammed cells, known as induced pluripotent stem (iPS) cells, have overlapping but still distinct gene expression signatures.

The differing signatures were evident regardless of where the cell lines were generated, the methods by which they were derived or the species from which they were isolated, said Bill Lowry, a researcher with the Broad Stem Cell Research Center and a study author.

"We need to keep in mind that iPS cells are not perfectly similar to embryonic stem cells," said Lowry, an assistant professor of molecular, cell and developmental biology. "We're not sure what this means with regard to the biology of pluripotent stem cells. At this point our analyses comprise just an observation. It could be biologically irrelevant, or it could be manifested as an advantage or a disadvantage."

The study appears in the July 2, 2009 issue of the journal Cell Stem Cell.

The iPS cells, like embryonic stem cells, have the potential to become all of the tissues in the body. However, iPS cells don't require the destruction of an embryo.

The study was a collaboration between the labs of Lowry and UCLA researcher Kathrin Plath, who were among the first scientists and the first in California to reprogram human skin cells into iPS cells. The researchers performed microarray gene expression profiles on embryonic stem cells and iPS cells to measure the expression of thousands of genes at once, creating a global picture of cellular function.

Lowry and Plath noted that, when the molecular signatures were compared, it was clear that certain genes were expressed differently in embryonic stem cells than they were in iPS cells. They then compared their data to that stored on a National Institutes of Health data base, submitted by laboratories worldwide. They analyzed that data to see if the genetic profiling conducted in other labs validated their findings, and again they found overlapping but distinct differences in gene expression, Lowry said.

"This suggested to us that there could be something biologically relevant causing the distinct differences to arise in multiple labs in different experiments," Lowry said. "That answered our first question: Would the same observation be made with cell lines created and maintained in other laboratories?"

Next, UCLA researchers wanted to confirm their findings in iPS cell lines created using the latest derivation methods. The cells from the UCLA labs were derived using an older method that used integrative viruses to insert four genes into the genome of the skin cells, including some genes known to cause cancer. They analyzed cell lines derived with newer methods that do not require integration of the reprogramming factors. Their analysis again showed different molecular signatures between iPS cells and their embryo-derived counterparts, and these signatures showed a significant degree of overlap with those generated with integrative methods.

To determine if this was a phenomenon limited to human embryonic stem cells, Lowry and Plath analyzed mouse embryonic stem cells and iPS lines derived from mouse skin cells and again validated their findings. They also analyzed iPS cell lines made from mouse blood cells with the same result

"We can't explain this, but it appears something is different about iPS cells and embryonic stem cells," Lowry said. "And the differences are there, no matter whose lab the cells come from, whether they're human or mouse cells or the method used to derive the iPS cells. Perhaps most importantly, many of these differences are shared amongst lines made in various ways."

Going forward, UCLA researchers will conduct more sophisticated analyses on the genes being expressed differently in the two cell types and try to understand what is causing that differential expression. They also plan to differentiate the iPS cells into various lineages to determine if the molecular signature is carried through to the mature cells. In their current study, Lowry and Plath did not look at differentiated cells, only the iPS and embryonic stem cells themselves.

Further study is crucial, said Mark Chin, a postdoctoral fellow and first author of the study.

"It will be important to further examine these cells lines in a careful and systematic manner, as has been done with other stem cell lines, if we are to understand the role they can play in clinical therapies and what effect the observed differences have on these cells," he said.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 150 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science.

Kim Irwin | EurekAlert!
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>