Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists find molecular differences between embryonic stem cells and reprogrammed skin cells

06.07.2009
UCLA researchers have found that embryonic stem cells and skin cells reprogrammed into embryonic-like cells have inherent molecular differences, demonstrating for the first time that the two cell types are clearly distinguishable from one another.

The data from the study suggest that embryonic stem cells and the reprogrammed cells, known as induced pluripotent stem (iPS) cells, have overlapping but still distinct gene expression signatures.

The differing signatures were evident regardless of where the cell lines were generated, the methods by which they were derived or the species from which they were isolated, said Bill Lowry, a researcher with the Broad Stem Cell Research Center and a study author.

"We need to keep in mind that iPS cells are not perfectly similar to embryonic stem cells," said Lowry, an assistant professor of molecular, cell and developmental biology. "We're not sure what this means with regard to the biology of pluripotent stem cells. At this point our analyses comprise just an observation. It could be biologically irrelevant, or it could be manifested as an advantage or a disadvantage."

The study appears in the July 2, 2009 issue of the journal Cell Stem Cell.

The iPS cells, like embryonic stem cells, have the potential to become all of the tissues in the body. However, iPS cells don't require the destruction of an embryo.

The study was a collaboration between the labs of Lowry and UCLA researcher Kathrin Plath, who were among the first scientists and the first in California to reprogram human skin cells into iPS cells. The researchers performed microarray gene expression profiles on embryonic stem cells and iPS cells to measure the expression of thousands of genes at once, creating a global picture of cellular function.

Lowry and Plath noted that, when the molecular signatures were compared, it was clear that certain genes were expressed differently in embryonic stem cells than they were in iPS cells. They then compared their data to that stored on a National Institutes of Health data base, submitted by laboratories worldwide. They analyzed that data to see if the genetic profiling conducted in other labs validated their findings, and again they found overlapping but distinct differences in gene expression, Lowry said.

"This suggested to us that there could be something biologically relevant causing the distinct differences to arise in multiple labs in different experiments," Lowry said. "That answered our first question: Would the same observation be made with cell lines created and maintained in other laboratories?"

Next, UCLA researchers wanted to confirm their findings in iPS cell lines created using the latest derivation methods. The cells from the UCLA labs were derived using an older method that used integrative viruses to insert four genes into the genome of the skin cells, including some genes known to cause cancer. They analyzed cell lines derived with newer methods that do not require integration of the reprogramming factors. Their analysis again showed different molecular signatures between iPS cells and their embryo-derived counterparts, and these signatures showed a significant degree of overlap with those generated with integrative methods.

To determine if this was a phenomenon limited to human embryonic stem cells, Lowry and Plath analyzed mouse embryonic stem cells and iPS lines derived from mouse skin cells and again validated their findings. They also analyzed iPS cell lines made from mouse blood cells with the same result

"We can't explain this, but it appears something is different about iPS cells and embryonic stem cells," Lowry said. "And the differences are there, no matter whose lab the cells come from, whether they're human or mouse cells or the method used to derive the iPS cells. Perhaps most importantly, many of these differences are shared amongst lines made in various ways."

Going forward, UCLA researchers will conduct more sophisticated analyses on the genes being expressed differently in the two cell types and try to understand what is causing that differential expression. They also plan to differentiate the iPS cells into various lineages to determine if the molecular signature is carried through to the mature cells. In their current study, Lowry and Plath did not look at differentiated cells, only the iPS and embryonic stem cells themselves.

Further study is crucial, said Mark Chin, a postdoctoral fellow and first author of the study.

"It will be important to further examine these cells lines in a careful and systematic manner, as has been done with other stem cell lines, if we are to understand the role they can play in clinical therapies and what effect the observed differences have on these cells," he said.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 150 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science.

Kim Irwin | EurekAlert!
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>