Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCLA scientists find molecular differences between embryonic stem cells and reprogrammed skin cells

UCLA researchers have found that embryonic stem cells and skin cells reprogrammed into embryonic-like cells have inherent molecular differences, demonstrating for the first time that the two cell types are clearly distinguishable from one another.

The data from the study suggest that embryonic stem cells and the reprogrammed cells, known as induced pluripotent stem (iPS) cells, have overlapping but still distinct gene expression signatures.

The differing signatures were evident regardless of where the cell lines were generated, the methods by which they were derived or the species from which they were isolated, said Bill Lowry, a researcher with the Broad Stem Cell Research Center and a study author.

"We need to keep in mind that iPS cells are not perfectly similar to embryonic stem cells," said Lowry, an assistant professor of molecular, cell and developmental biology. "We're not sure what this means with regard to the biology of pluripotent stem cells. At this point our analyses comprise just an observation. It could be biologically irrelevant, or it could be manifested as an advantage or a disadvantage."

The study appears in the July 2, 2009 issue of the journal Cell Stem Cell.

The iPS cells, like embryonic stem cells, have the potential to become all of the tissues in the body. However, iPS cells don't require the destruction of an embryo.

The study was a collaboration between the labs of Lowry and UCLA researcher Kathrin Plath, who were among the first scientists and the first in California to reprogram human skin cells into iPS cells. The researchers performed microarray gene expression profiles on embryonic stem cells and iPS cells to measure the expression of thousands of genes at once, creating a global picture of cellular function.

Lowry and Plath noted that, when the molecular signatures were compared, it was clear that certain genes were expressed differently in embryonic stem cells than they were in iPS cells. They then compared their data to that stored on a National Institutes of Health data base, submitted by laboratories worldwide. They analyzed that data to see if the genetic profiling conducted in other labs validated their findings, and again they found overlapping but distinct differences in gene expression, Lowry said.

"This suggested to us that there could be something biologically relevant causing the distinct differences to arise in multiple labs in different experiments," Lowry said. "That answered our first question: Would the same observation be made with cell lines created and maintained in other laboratories?"

Next, UCLA researchers wanted to confirm their findings in iPS cell lines created using the latest derivation methods. The cells from the UCLA labs were derived using an older method that used integrative viruses to insert four genes into the genome of the skin cells, including some genes known to cause cancer. They analyzed cell lines derived with newer methods that do not require integration of the reprogramming factors. Their analysis again showed different molecular signatures between iPS cells and their embryo-derived counterparts, and these signatures showed a significant degree of overlap with those generated with integrative methods.

To determine if this was a phenomenon limited to human embryonic stem cells, Lowry and Plath analyzed mouse embryonic stem cells and iPS lines derived from mouse skin cells and again validated their findings. They also analyzed iPS cell lines made from mouse blood cells with the same result

"We can't explain this, but it appears something is different about iPS cells and embryonic stem cells," Lowry said. "And the differences are there, no matter whose lab the cells come from, whether they're human or mouse cells or the method used to derive the iPS cells. Perhaps most importantly, many of these differences are shared amongst lines made in various ways."

Going forward, UCLA researchers will conduct more sophisticated analyses on the genes being expressed differently in the two cell types and try to understand what is causing that differential expression. They also plan to differentiate the iPS cells into various lineages to determine if the molecular signature is carried through to the mature cells. In their current study, Lowry and Plath did not look at differentiated cells, only the iPS and embryonic stem cells themselves.

Further study is crucial, said Mark Chin, a postdoctoral fellow and first author of the study.

"It will be important to further examine these cells lines in a careful and systematic manner, as has been done with other stem cell lines, if we are to understand the role they can play in clinical therapies and what effect the observed differences have on these cells," he said.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 150 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science.

Kim Irwin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>