Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers develop way to strengthen proteins with polymers

22.05.2012
Findings could mean good news for protein-based therapeutics

Proteins are widely used as drugs — insulin for diabetics is the best known example — and as reagents in research laboratories, but they react poorly to fluctuations in temperature and are known to degrade in storage.

Because of this instability, proteins must be shipped and stored at regulated temperatures, resulting in increased costs, and sometimes must be discarded because their "active" properties have been lost. Manufacturers of protein drugs will generally add substances known as excipients, like polyethylene glycol, to the proteins to prolong their activity.

In a new study published in the Journal of the American Society of Chemistry (DOI: 10.1021/ja2120234), investigators from the UCLA Department of Chemistry and Biochemistry and the California NanoSystems Institute at UCLA (CNSI) describe how they synthesized polymers to attach to proteins in order to stabilize them during shipping, storage and other activities. The study findings suggest that these polymers could be useful in stabilizing protein formulations.

The polymers consist of a polystyrene backbone and side chains of trehalose, a disaccharide found various plants and animals that can live for long periods with very little or no water. An example many people will recognize is Sea- Monkeys — the 'novelty aquarium pet' introduced in 1962. Sea–Monkeys can be purchased as kits that contain a white powder; when water is added, the powder becomes small shrimp whose long tails are said to resemble those of monkeys.

Trehalose is known to stabilize proteins when water is removed, and as a result, it is an additive in several protein drug formulations approved by the Food and Drug Administration (FDA) to treat cancer and other conditions.

"Our polymers were synthesized by a controlled radical polymerization technique called reversible addition-fragmentation chain transfer (RAFT) polymerization in order to have end groups that can attach to proteins to form what is called a protein-polymer conjugate," said Heather Maynard, a UCLA associate professor of chemistry and biochemistry and a member of the CNSI. "We found that the polymers significantly stabilized the protein we used — lysozyme — better to lyophilization (freeze-drying, in which water is removed from the protein) and to heat than did the protein with no additives."

The research team found that attaching the polymer covalently to the protein — that is, forming a protein-polymer conjugate — stabilized the protein to lyophilization better than adding the non-conjugated polymer at the same concentration.

The team also found that the polymers stabilized lysozyme significantly better than the currently used excipients trehalose and polyethylene glycol, depending on the stress and conditions used.

The Maynard research group is currently exploring the use of their polymer as a stabilizer by attaching it or adding it to FDA–approved protein therapeutics. In addition, they are investigating the mechanism of how the polymer stabilizes proteins.

The research team included Rock J. Mancini and Juneyoung Lee, both graduate students of chemistry and biochemistry in the Maynard research group.


The research is supported by the National Science Foundation.
The paper is available at http://pubs.acs.org/doi/abs/10.1021/ja2120234.
The California NanoSystems Institute is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. The total amount of research funding in nanoscience and nanotechnology awarded to CNSI members has risen to over $900 million. UCLA CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Jennifer Marcus | EurekAlert!
Further information:
http://www.ucla.edu

Further reports about: CHEMISTRY CNSI NanoSystems UCLA building block polyethylene glycol

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>