Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA engineers develop faster method to detect bacterial contamination in coastal waters

03.03.2010
Method cuts testing time from a day or more to less than an hour

Currently, beachgoers are informed about water-quality conditions based on results from the previous day's sample. Scientists must collect samples in the field, then return to a lab to culture them for analysis — a process that takes a minimum of 24 hours.

Now, engineers from the UCLA Henry Samueli School of Engineering and Applied Science have sped up the process of analyzing bacterial concentrations to under one hour, through the development of a new in-field, rapid-detection method.

Since bacteria levels can change quickly in the water column, a one-day turnaround time simply isn't fast enough to adequately protect swimmers or prevent unnecessary beach closures, the engineers say.

This issue is especially pertinent in California, where gastrointestinal illness that can result from contact with contaminated beach waters has been estimated to cost Orange and Los Angeles county beach visitors between $21 million and $51 million per year in sick days and related issues.

Furthermore, California coastlines are subject to chronic water pollution problems due to sewage spills and urban runoff. Rainstorms in Southern California can further exacerbate this problem, as pollutants that have accumulated over time on street surfaces are suddenly flushed into our waterways and into the ocean.

Jenny Jay, UCLA associate professor of civil and environmental engineering, and Ph.D. student Christine Lee have advanced and tested a rapid method in marine and freshwater samples from beaches in Malibu and Santa Monica. To their knowledge, it is among the first viable in-field methods for rapid, portable fecal bacteria analysis. This research will be published in an upcoming issue of the Journal of Applied Microbiology and is currently available online.

Even for areas like the Southern California coast, which are close to state-of-the-art laboratories, transportation time, coupled with lab work, may mean that results often are not ready until the next day. With such a delay between sampling and results, the results may no longer be relevant due to the dynamic nature of water quality in beach environments.

The new rapid method represents a field-portable alternative to more expensive procedures, particularly where larger-scale, expensive equipment is not readily accessible. To decrease the time to determine results, the researchers have outfitted a portable kit to test samples for bacterial concentrations.

"We envision a tool that can be used by lifeguards to collect and analyze water samples throughout the day, providing beachgoers with up-to-date, near-real-time data on water conditions," Lee said. "This could also be useful in determining persistence of a bacterial contaminant after a pollution event, such as a sewage spill or a septic tank leaking."

"We are currently applying this method, in a new approach, to identifying contamination sources in which we can adaptively sample the environment in order to hone in on hotspots," Jay said.

The process uses magnetic beads conjugated to specific antibodies that identify and bind fecal bacteria that are used as standards for determining the safety of recreational waters, such as E. coli and Enterococcus.

After a few filtration and isolation steps, the sample organisms are lysed and treated with an enzyme that catalyzes a light-emitting reaction with target ATP, the energy currency of a cell. Cells break down ATP to obtain energy important for cellular processes.

Scientists can then determine bacterial concentrations based on how much light is released by using a luminometer, a device that detects light emissions.

The process is called covalently linked immunomagnetic separation/adenosine triphosphate quantification technique (Cov-IMS/ATP).

The paper's other co-authors are UCLA electrical engineering professor William Kaiser and John Griffith, Ph.D., a senior microbiologist with the Southern California Coastal Water Research Project.

For the Southern California coast, using this detection method could significantly inform source-tracking practices.

"UCLA's rapid-method work is very exciting," said Mark Gold, D.Env., president of the environmental group Heal the Bay. "It could result in faster notification of the public on the health risks of swimming at contaminated beaches and better protection of public health."

Jay's research group has also applied Cov-IMS/ATP in drinking and source waters in Dar es Salaam, Tanzania, as part of the Environmental Protection Agency's People, Planet, Prosperity (P3) initiative, which promotes innovative designs for sustainabe resource use. The Tanzania project, which focuses on waterborne illness, contamination and hygiene behavior, is being conducted in partnership with Stanford University civil and environmental engineering professors Alexandria Boehm and Jenna Davis. Recent and future work for Jay's group also involves application of this method in beach water samples in Tijuana, Mexico.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Matthew Chin | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>