Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Santa Barbara researchers uncover new pathways in bacterial intercellular competition

09.04.2013
There's an epic battle taking place that's not on the national radar: intercellular competition. While it's not an Olympic event, new research from UC Santa Barbara demonstrates that this microscopic rivalry can be just as fierce as humans going for the gold.

Christopher Hayes, UCSB associate professor of molecular, cellular and developmental biology, along with postdoctoral fellow Sanna Koskiniemi, graduate student James Lamoureux, and others, examined the role certain proteins, called rearrangement hotspots (Rhs), play in intercellular competition in bacteria. The findings appear today in the Proceedings of the National Academy of Sciences.

Rhs proteins and related YD-peptide repeat proteins are present in a wide range of bacterial species and other organisms, including human beings, where they help establish communications between neurons in the brain when the visual system is developing. Hayes and his team found that Rhs proteins enable Dickeya dadantii 3937, a phytopathogenic bacterium causing soft rot diseases on many crops, to compete with members of its own kind through touch-dependent killing.

While Rhs have been recognized for more 30 years, their function has been enigmatic. This new research sheds light on the mystery. Rhs proteins possess a central repeat region, characteristically the YD-repeat proteins also found in humans, as well as variable C-terminal sequences, which have toxin activity. C-terminal regions are highly variable between bacterial strains even in the same species, indicating that a wide variety of weapons are deployed.

"Bacteria almost always have a different Rhs toxins," explained Hayes. "No one really knows why, but perhaps the toxins are rapidly evolving, driven by intercellular competition. In essence, these cells are fighting it out with each other. It's like an arms race to see who has the best toxins."

Cellular competition is analogous to that between humans and reflects a scarcity of resources. Like people, bacteria need a place to live and food to eat. "We think these systems are important for bacterial cells to establish a home and defend it against competitors," said Hayes. "In fact, bacteria have many systems for competition. And as we uncover more mechanisms for intercellular competition, we realize this is a fundamental aspect of bacterial biology."

These findings demonstrate that Rhs systems in diverse bacterial species are toxin delivery machines. "We have been able to show that gram-negative (Dickeya dadantii) as well as gram-positive (Bacillus subtilis) bacteria use Rhs proteins to inhibit the growth of neighboring bacteria in a manner that requires cell-to-cell contact," said Koskiniemi, the paper's lead author.

The toxic part of Rhs at the tip (the C-terminal region) is delivered into target cells after cell-to-cell contact. Some toxic tips destroy DNA and others destroy transfer RNA, which is essential for protein synthesis. These toxin activities help the bacteria expressing them to outcompete other members of the same species not carrying an antidote.

This work may help scientists design Rhs-based bacterial probiotics that kill specific pathogens but leave most normal flora unharmed. The research was supported by grants from the National Science Foundation and National Institutes of Health and by fellowships from the Carl Tryggers and Wenner-Gren Foundations.

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>