Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC research produces novel sensor with improved detection selectivity

24.03.2011
A highly sensitive sensor that combines a variety of testing means (electrochemistry, spectroscopy and selective partitioning) into one device has been developed at the University of Cincinnati. It's already been tested in a variety of settings – including testing for components in nuclear waste.

The sensor is unusual in that most sensors only have one or two modes of selectivity, while this sensor has three. In practical terms, that means the UC sensor has three different ways to find and identify a compound of interest. That's important because settings like a nuclear waste storage tank are a jumbled mix of chemical and radioactive wastes. The sensor, however, would have a variety of applications, including testing in other environments and even medical applications.

Research related to this novel sensor will be presented at the American Chemical Society biannual meeting March 27-31 in Anaheim, Calif., in a presentation titled "Using Spectroelectrochemistry to Improve Sensor Selectivity."

That presentation will be made March 28 by William Heineman, distinguished research professor of chemistry at the University of Cincinnati. He is one of six international scientists invited to speak by electrochemistry students involved in planning a conference symposium. Heineman has published more than 400 research articles on the topics of spectroelectrochemistry, electroanalytical chemistry, bioanalytical chemistry and chemical sensors, and has won numerous national and international awards for his work.

BACKGROUND AND USES FOR THIS SENSOR RESEARCH

Research on this sensor concept began more than a decade ago and has received support from the United States Department of Energy for most of that time. "They wanted a sensor that can be lowered in a tank to make lots of measurements quickly or have the option of leaving it in there to monitor what's going on over months or a year," said Heineman, who added that the ideal sensor is both rugged and very selective and sensitive.

The sensor has, in fact, been tested at the Hanford site, a mostly decommissioned nuclear production complex in Washington state, where it was used to detect one important component of the radioactive and hazardous wastes stored inside the giant tanks there.

The basic design and concept for this monitor could be used in many other environmental or medical settings. These include detection of toxic heavy metals and polycyclic aromatic hydrocarbons at superfund sites.

HOW IT WORKS

The three-way selectivity comes from the use of coatings, electrochemistry, and spectroscopy. The selective coating only allows certain compounds to enter the sensing region. For example, all negatively charged ions might be able to enter the sensor while all positively charged ions are excluded. Next comes the electrochemistry. A potential is applied, and an even smaller group of compounds are electrolyzed. Finally, a very specific wavelength of light is used to detect the actual compound of interest.

The end result is that compounds, even those present in very low concentrations, can be detected and analyzed. This is especially important in medical monitoring and other applications requiring high selectivity and sensitivity.

"Our goal in this research was to demonstrate that the concept works, and that goal has been met as it's now been tested in several ways. Maybe that's why the students at the ACS meeting wanted to hear about it," said UC's Heineman.

M.B. Reilly | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>