Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis scientists discover exact receptor for DEET that repels mosquitoes

29.10.2014

DEET has been the gold standard of insect repellents for more than six decades, and now researchers led by a University of California, Davis, scientist have discovered the exact odorant receptor that repels them.

They also have identified a plant defensive compound that might mimic DEET, a discovery that could pave the way for better and more affordable insect repellents. Findings from the study appear in the journal Proceedings of the National Academy of Sciences.


Biochemist Walter Leal has discovered which receptor on mosquito antennae detects DEET, making it an effective repellant. (Kathy Keatley Garvey/UC Davis photo)

More than 200 million people worldwide use DEET, developed by scientists at the U.S. Department of Agriculture and patented by the U.S. Army in 1946.

“Mosquitoes are considered the most deadly animals on the planet, but unfortunately, not everyone who needs this repellent can afford to use it, and not all who can afford it can use it due to its undesirable properties such as an unpleasant odor,” said lead author Professor Walter Leal of the Department of Molecular and Cellular Biology.

“Vector-borne diseases are major health problems for travelers and people living in endemic regions,” Leal said. “Among the most notorious vectors are mosquitoes that transmit the protozoan parasites causing malaria and viruses that cause infections, such as dengue, yellow fever, chikungunya and encephalitis.”

How mosquitoes are repelled

Mosquitoes detect scents with olfactory receptors on their antennae. The researchers examined two families of olfactory receptors of the southern house mosquito, Culex quinquefasciatus, which transmits diseases such as West Nile virus.

One receptor group, “ionotropic receptors,” normally detects acids, bases and other water-soluble compounds. The researchers discovered, however, that a receptor from the odorant receptor group is directly activated by DEET.

They also detected a link between DEET and the compound methyl jasmonate, suggesting that DEET might work by mimicking a defensive chemical found in plants.

Dan Strickman, senior program officer for Vector Control at the Bill and Melinda Gates Foundation’s Global Health Program, said, “We are at a very exciting time for research on insect repellents.” (The Gates Foundation was not involved in the study.)

“For decades, the field concentrated on screening compounds for activity, with little or no understanding of how chemicals interacted with mosquitoes to discourage biting. Use of modern techniques that combine molecular biology, biochemistry and physiology has generated evidence on how mosquitoes perceive odors,” Strickman said.

Other researchers on the team were project scientist Pingxi Xu, postdoctoral scholar Young-Moo Choo, and agricultural and environmental chemistry graduate student Alyssa De La Rosa.

Mosquito researcher Anthony Cornel, an associate professor with the UC Davis Department of Entomology and Nematology and based at the Kearney Agricultural Research and Extension Center, Parlier, provided mosquitoes that allowed the Leal lab to duplicate his mosquito colony at UC Davis. Richard Benton of the University of Lausanne, Switzerland, shared his flies, Drosophila plasmids, also part of the research.

The work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

For more about this study, see the Department of Entomology and Nematology website at: http://entomology.ucdavis.edu/.

About UC Davis

UC Davis is a global community of individuals united to better humanity and our natural world while seeking solutions to some of our most pressing challenges. Located near the California state capital, UC Davis has more than 34,000 students, and the full-time equivalent of 4,100 faculty and other academics and 17,400 staff. The campus has an annual research budget of over $750 million, a comprehensive health system and about two dozen specialized research centers. The university offers interdisciplinary graduate study and 99 undergraduate majors in four colleges and six professional schools.

Additional information:

Media contact(s):

Pat Bailey | Eurek Alert!
Further information:
http://news.ucdavis.edu/search/news_detail.lasso?id=11071

Further reports about: Biology Cellular DEET Entomology diseases insect mosquito mosquitoes olfactory receptors receptor

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>