Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis research shows how the body senses a range of hot temperatures

02.03.2012
Heat-sensitive proteins assembled in different combinations distinguish temperatures, from a warm handshake to spicy foods

The winter sun feels welcome, but not so a summer sunburn. Research over the past 20 years has shown that proteins on the surface of nerve cells enable the body to sense several different temperatures. Now scientists have discovered how just a few of these proteins, called ion channels, distinguish perhaps dozens of discrete temperatures, from mildly warm to very hot.

Researchers showed that the building blocks, or subunits, of heat-sensitive ion channels can assemble in many different combinations, yielding new types of channels, each capable of detecting a different temperature. The discovery, in cell cultures, demonstrates for the first time that only four genes, each encoding one subunit type, can generate dozens of different heat-sensitive channels.

"Researchers in the past have assumed that because there are only four genes, there are only four heat-sensitive channels, but now we have shown that there are many more," said Jie Zheng, leader of the research and an associate professor of physiology and membrane biology at the UC Davis School of Medicine.

The research publishes in the Journal of Biological Chemistry on March 2.

Ion channels are pores in cell membranes. Their ability to open and close controls the flow of charged ions, which turns neuron signalling on or off -- in this case to inform the body of the temperature the neuron senses.

The researchers found that when different subunits combine, the resultant hybrid, or heteromeric, channel can detect temperatures about midway between what the "parent" channels detect.

One of the channels they studied, called TRPV1, reacts to hot temperatures -- about 100 degrees Fahrenheit. It is also responsible for the ability to sense spicy foods, such as chili peppers. A second channel, TRPV3, responds to temperatures of about 85 degrees. It also senses many food flavors such as those found in rosemary, oregano, vanilla and cinnamon that elicit a warm sensation.

When the TRPV1 and TRPV3 subunits recombine, the heteromeric channel is tuned to about 92 degrees. Surprisingly, the study showed that the hybrid channel has an even higher chemical sensitivity than the channels that made it up.

Zheng and his colleagues also showed that channels made up of TRPV1 and TRPV3 subunits react to heat at a rate about midway between that of the two constituent channel subunits. But repeatedly exposing the hybrid channels to their target temperature boosted their response, a behavior called sensitization, which TRPV3 also exhibits.

"It says 'I remember this temperature. I will make a really loud noise to tell the system that it is coming,'" Zheng said. The process allows the body to be more sensitive to temperature.

By contrast, TRPV1 typically responds the same way when repeatedly exposed to its target temperature -- and sometimes even decreases its response, a process called desensitization. It helps the body to adapt to high temperature, Zheng explained.

The research builds on work the team published in 2007 demonstrating that the heat-sensitive subunits can combine to form heteromeric channels. However, at the time, scientists didn't know how these channels respond to heat. The new work shows that the channels are indeed sensitive to different temperatures.

"Knowing that there are many distinct heat-sensing ion channels now opens the way to understand how neurons encode precise temperature information, an important process that allows us to enjoy the rich spectrum of temperature in life -- a memorable warm handshake, a soothing shower and a cup of hot latte -- and add vanilla flavor, please," Zheng said. "It also may provide insights regarding the causes and potential treatments for temperature-sensitivity disorders, such as Raynaud's syndrome."

Raynaud's syndrome is a condition that causes some areas of the body -- such as fingers, toes, the tip of the nose and ears -- to feel numb and cool in response to cold temperatures or stress. The cause is unknown.

The scientists introduced the genes for TRPV1 and TRPV3 channel subunits to cultured human kidney cells. They tagged the genes with fluorescent markers to confirm when the resulting proteins had combined to form a new channel complex.

Once functional channels were formed, the researchers used a glass pipette with a very fine tip to record ion channels' responses to temperature changes.

In order to rapidly increase the temperature, they built an apparatus that allowed them to deliver an infrared laser beam to the cell. The method allowed them to heat the channel more than a thousand times faster than commercially available heating devices.

The collaborative research is funded by the National Institutes of Health, the American Heart Association and the Chinese government.

The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its research and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health. For more information, visit UC Davis School of Medicine at medschool.ucdavis.edu.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>