Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researchers help push for standard DNA barcodes for plants

28.07.2009
Two University of British Columbia researchers are part of an international team recommending standards for the DNA barcoding of land plants, a step they hope will lead to a universal system for identifying over 400,000 species, and ultimately boost conservation efforts.

Barcodes based on portions of DNA – the taxonomical equivalent to UPC barcodes on products – have already emerged as a viable solution for uniquely identifying species in many animal groups. However, because DNA varies less between plant species, determining which portions of plant DNA to use as a unique identifier has been a thorny issue.

The research team, which included scientists from more than 20 institutions around the world, selected two genomic regions – genes referred to as rbcL and matK – as the best candidates from which to generate barcode data.

Results of the four-year study are published this week in the Proceedings of the National Academy of Sciences.

"It's a pragmatic first step in solving a complex issue," says UBC botanist and Associate Professor Sean Graham, who conducted research on the project and helped author the study. "We've selected areas of DNA that are available in the vast majority of plants, could easily and accurately be sequenced, and when combined, provide a near-unique signature for barcoding."

Limiting the barcode to information generated from two DNA sites should help cut costs associated with sequencing and retrieving the correct information.

The researchers used 400 land plant samples to test the two-site solution. In 72% of cases they were immediately able to determine the correct species of plant, and in the rest of the cases were able to place the plant in a group of congeneric species.

"There's no doubt this will be refined in the future, but there is a need for a core barcoding standard now," says Graham, with the UBC Botanical Garden and Centre for Plant Research, and the Department of Botany. "Particular research projects with special needs could augment the system by adding a third DNA locus to their barcode if required."

Theoretically, any DNA barcoding standard would have to accommodate over 400,000 species of plants, and would be a key step toward establishing a central barcode database for taxonomy, agriculture and conservation.

The 2008 International Union for Conservation of Nature Red List categorized, 8,457 out of an evaluated 12,055 species of plants as endangered, but notes only four per cent of total plant species have been evaluated. Those evaluations tend to focus on areas losing biodiversity and plants families that are endangered. Estimates of the total number of endangered plants vary from 13 per cent to 37 per cent.

Graham worked with UBC post-doctoral fellow Diana Percy on the project, and the international research team included scientists from the universities of Guelph and Toronto, along with scientists from the United Kingdom, the United States, Europe, South and Central America, South Africa and South Korea.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>