Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researchers help push for standard DNA barcodes for plants

28.07.2009
Two University of British Columbia researchers are part of an international team recommending standards for the DNA barcoding of land plants, a step they hope will lead to a universal system for identifying over 400,000 species, and ultimately boost conservation efforts.

Barcodes based on portions of DNA – the taxonomical equivalent to UPC barcodes on products – have already emerged as a viable solution for uniquely identifying species in many animal groups. However, because DNA varies less between plant species, determining which portions of plant DNA to use as a unique identifier has been a thorny issue.

The research team, which included scientists from more than 20 institutions around the world, selected two genomic regions – genes referred to as rbcL and matK – as the best candidates from which to generate barcode data.

Results of the four-year study are published this week in the Proceedings of the National Academy of Sciences.

"It's a pragmatic first step in solving a complex issue," says UBC botanist and Associate Professor Sean Graham, who conducted research on the project and helped author the study. "We've selected areas of DNA that are available in the vast majority of plants, could easily and accurately be sequenced, and when combined, provide a near-unique signature for barcoding."

Limiting the barcode to information generated from two DNA sites should help cut costs associated with sequencing and retrieving the correct information.

The researchers used 400 land plant samples to test the two-site solution. In 72% of cases they were immediately able to determine the correct species of plant, and in the rest of the cases were able to place the plant in a group of congeneric species.

"There's no doubt this will be refined in the future, but there is a need for a core barcoding standard now," says Graham, with the UBC Botanical Garden and Centre for Plant Research, and the Department of Botany. "Particular research projects with special needs could augment the system by adding a third DNA locus to their barcode if required."

Theoretically, any DNA barcoding standard would have to accommodate over 400,000 species of plants, and would be a key step toward establishing a central barcode database for taxonomy, agriculture and conservation.

The 2008 International Union for Conservation of Nature Red List categorized, 8,457 out of an evaluated 12,055 species of plants as endangered, but notes only four per cent of total plant species have been evaluated. Those evaluations tend to focus on areas losing biodiversity and plants families that are endangered. Estimates of the total number of endangered plants vary from 13 per cent to 37 per cent.

Graham worked with UBC post-doctoral fellow Diana Percy on the project, and the international research team included scientists from the universities of Guelph and Toronto, along with scientists from the United Kingdom, the United States, Europe, South and Central America, South Africa and South Korea.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>