Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAlberta medical researchers discover how immune system kills healthy cells

11.09.2013
Basic science discovery could improve cancer and virus treatments

Medical scientists at the University of Alberta have made a key discovery about how the immune system kills healthy cells while attacking infections. This finding could one day lead to better solutions for cancer and anti-viral treatments.

Faculty of Medicine & Dentistry researcher Colin Anderson recently published his team's findings in the peer-reviewed journal, Journal of Immunology. His team included colleagues from the United States and the Netherlands, and graduate students from the U of A.

Previous research has shown that when the immune system launches an aggressive attack on infected cells, healthy tissues and cells can be killed or damaged in the process. Anderson and his team discovered the mechanisms in the immune system that cause this "overkill" response.

"This opens the opportunity that one might be able to manipulate the immune system response to block collateral damage without blocking the killing of infected cells," Anderson explained.

"In the future this might be important in the development of clinical treatments in cases where the immune system response needs to be harnessed. For example, in treating various viral infections, the collateral damage caused during the immune system attack is a large part of the illness.

"In other cases, such as cancer or tumour treatments, one may want to increase the immune system's ability to kill collateral cells, in hopes of killing tumour cells that would otherwise escape during treatment and spread elsewhere in the body. Our research suggests there are other mechanisms that could improve cancer therapy and make it more efficacious. This finding could also help us understand why certain cancer treatments are more successful than others."

Anderson's team discovered "the weaponry the immune system uses to try and kill an infected or cancerous cell is not exactly the same as the weaponry that causes collateral damage to innocent bystander cells that aren't infected." For years, it was assumed the weaponry to kill infected cells versus healthy cells was exactly the same.

The research group is continuing the work in this area to see if they can indeed alter the level of collateral damage to healthy cells without altering the attack on infected cells.

Anderson is a researcher in the Department of Surgery and the Department of Medical Microbiology and Immunology. He is also a member of both the Alberta Diabetes Institute and the Alberta Transplant Institute.

The research was funded by the Canadian Institutes of Health Research.

Raquel Maurier | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>