Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA scientists collaborate to gain understanding of self-cleaning gecko foot hair

21.06.2012
Imagine the money you’d save if you bought a roll of duct tape and could use it over and over again without having to toss it in the garbage after one use.
Wall-climbing robots, bioadhesives or other sticky substances can benefit greatly from a recent discovery about the self-cleaning and reuse abilities of a gecko’s foot hair by a University of Akron graduate student-researcher and his partners. Their work was published in the June 13 edition of Interface, the Journal of the Royal Society.

The sticky yet clean attribute of this discovery is the gecko toe pad and its ability to repeatedly attach and detach to a surface.

Researchers Shihao Hu, a UA mechanical engineering student, and biologist and recent UA graduate Stephanie Lopez-Chueng of Keiser University in Fort Lauderdale, Fla., and their team discovered that the clue to a dynamic self-cleaning mechanism in gecko setae, or microscopic foot hair, is achieved through the hyperextension of their toes.

“The analysis reveals that geckos have tiny sticky hairs on their toes called setaes, and due to the attaching and detaching mechanism caused by the rolling and peeling motion of their toes as they walk, they release the dirt particles leaving their feet clean,” Hu says. “The dynamic hyperextension effect of its natural toe peeling increases the speed of the cleaning to nearly twice as fast as previously perceived.”

Partners in the study included Hu; Lopez-Chueng; Dr. Peter Niewiarowski, interim director, UA Integrated Bioscience Ph.D. program; and Zhenhai Xia, University of North Texas, Materials Science and Engineering.
The findings, published in the article, “Dynamic Self-Cleaning in Gecko Setae via Digital Hyperextension,” show that a gecko-inspired adhesive can function under conditions where traditional adhesives do not, possibly inspiring new applications in space or water exploration tools or in common items like duct tape or other products that use sticky properties.

“Through biomimicry, a gecko-inspired adhesive can function under conditions where traditional adhesives do not, such as in a vacuum, outer space or under water,” Niewiarowski says. “More broadly, a gecko-inspired adhesive would be able to bind materials together very strongly yet also release very easily. Imagine a tape that binds things together securely like duct tape yet can also be removed and reused over and over again like a post-it note.”

About The University of Akron

The University of Akron is the public research university for Northeast Ohio. The Princeton Review listed UA among the “Best in the Midwest” in its 2011 edition of Best Colleges: Region-by-Region. Nearly 30,000 students are enrolled in UA’s 300 associate, bachelor’s, master’s, doctoral and law degree programs and 100 certificate programs at sites in Summit, Wayne, Medina and Holmes counties. For more information, visit The University of Akron.

Media contact: Denise Henry, 330-972-6477 or henryd@uakron.edu

Marisha Daniels | EurekAlert!
Further information:
http://www.uakron.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>