Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers identify new functions for autoimmune disease 'risk' gene

22.07.2013
Work could have big impact on autoimmune disease treatment strategies

Researchers at the University of Minnesota have identified infection-fighting and inflammation-suppressing functions for a gene associated with human autoimmune disease.

The discovery, centered on a gene known as PTPN22, could set into motion new treatment approaches for autoimmune diseases like lupus, rheumatoid arthritis and type 1 diabetes. The key to these advances may lie with a better understanding of how a variant of PTPN22, known as a "risk variant," impacts autoimmune disease development and the behavior of myeloid cells that act as the body's "first responders."

The study appears in the journal Immunity.

In launching their latest research project, University of Minnesota Center for Immunology researchers set out to determine how PTPN22 could regulate immune system function in health and disease.

"Almost a decade ago, researchers at the University of Minnesota and other institutions discovered that people carrying a variant form of the PTPN22 gene bear an increased risk of becoming sick with certain autoimmune diseases. However, we have lacked a deep understanding how the variant creates that increased risk," said Erik J. Peterson, M.D., one of the study's lead authors and a University of Minnesota Medical School associate professor in the Division of Rheumatic and Autoimmune Diseases. "We wanted to understand the molecular basis for PTPN22 association with disease."

Much of the work carried out in the latest study took place in Peterson's laboratory, which utilizes genetic, biochemical, and primary human sample-based approaches to investigate how "risk" genes predispose to development of autoimmune disease.

According to the study's authors, previous research showed that PTPN22 works in immune cells, but few studies had specifically examined PTPN22's function in infection-fighting cells called myeloid cells.

"Myeloid cells are among the body's 'first responders' to a challenge with a virus or bacterium," said Yaya Wang, Ph.D., one of the study's co-first authors and a research associate in the Center for Immunology. "Upon recognizing the presence of an infection, myeloid cells produce chemicals that increase inflammation and help fight the invading microbe. We were intrigued by the idea that PTPN22 and its disease-associated variant might have a role in myeloid cell functions."

Researchers found that both mouse and human myeloid cells carrying the PTPN22 "risk" variant show decreased production of molecules called type 1 Interferons. Type 1 Interferons are needed to boost immune responses to viruses and other infections. In mice lacking the PTPN22 gene, reduced type 1 Interferon production correlates with an impaired ability to fight infections.

But the PTPN22 gene does more than simply fight infection, the study showed.

"Unexpectedly, we also found that PTPN22 suppresses inflammation," said Wang. "Furthermore, we showed that the PTPN22 risk variant is defective in suppressing inflammatory arthritis."

"We anticipate that our findings will open new lines of investigation into how PTPN22 and other autoimmune disease 'risk' genes could work in infection-fighting and anti-inflammatory processes. Ultimately, we hope that the research will accelerate the drive toward better treatments and cures for autoimmune disorders," said Peterson.

More research is underway to determine the impact of the PTPN22 variant in the function of myeloid blood cells, particularly in patients suffering from lupus. Researchers are also comparing immune responses to influenza A vaccines between carriers and non-carriers of the PTPN22 variant. The goal is to understand the role of the disease-associated variant in mounting a normal response to immunizations against viruses.

This project was funded by grants from the National Institutes of Health (NIH), R01AR057781 (awarded to Peterson) and R01AI070544 (awarded to co-senior author Nunzio Bottini, M.D., Ph.D.), as well as from several other sources, including: the American College of Rheumatology Within Our Reach Campaign, the American Diabetes Association, the Alliance for Lupus Research, and the Lupus Foundation of Minnesota.

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit http://www.med.umn.edu to learn more.

Caroline Marin | EurekAlert!
Further information:
http://www.umn.edu
http://www.med.umn.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>