Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers identify new functions for autoimmune disease 'risk' gene

22.07.2013
Work could have big impact on autoimmune disease treatment strategies

Researchers at the University of Minnesota have identified infection-fighting and inflammation-suppressing functions for a gene associated with human autoimmune disease.

The discovery, centered on a gene known as PTPN22, could set into motion new treatment approaches for autoimmune diseases like lupus, rheumatoid arthritis and type 1 diabetes. The key to these advances may lie with a better understanding of how a variant of PTPN22, known as a "risk variant," impacts autoimmune disease development and the behavior of myeloid cells that act as the body's "first responders."

The study appears in the journal Immunity.

In launching their latest research project, University of Minnesota Center for Immunology researchers set out to determine how PTPN22 could regulate immune system function in health and disease.

"Almost a decade ago, researchers at the University of Minnesota and other institutions discovered that people carrying a variant form of the PTPN22 gene bear an increased risk of becoming sick with certain autoimmune diseases. However, we have lacked a deep understanding how the variant creates that increased risk," said Erik J. Peterson, M.D., one of the study's lead authors and a University of Minnesota Medical School associate professor in the Division of Rheumatic and Autoimmune Diseases. "We wanted to understand the molecular basis for PTPN22 association with disease."

Much of the work carried out in the latest study took place in Peterson's laboratory, which utilizes genetic, biochemical, and primary human sample-based approaches to investigate how "risk" genes predispose to development of autoimmune disease.

According to the study's authors, previous research showed that PTPN22 works in immune cells, but few studies had specifically examined PTPN22's function in infection-fighting cells called myeloid cells.

"Myeloid cells are among the body's 'first responders' to a challenge with a virus or bacterium," said Yaya Wang, Ph.D., one of the study's co-first authors and a research associate in the Center for Immunology. "Upon recognizing the presence of an infection, myeloid cells produce chemicals that increase inflammation and help fight the invading microbe. We were intrigued by the idea that PTPN22 and its disease-associated variant might have a role in myeloid cell functions."

Researchers found that both mouse and human myeloid cells carrying the PTPN22 "risk" variant show decreased production of molecules called type 1 Interferons. Type 1 Interferons are needed to boost immune responses to viruses and other infections. In mice lacking the PTPN22 gene, reduced type 1 Interferon production correlates with an impaired ability to fight infections.

But the PTPN22 gene does more than simply fight infection, the study showed.

"Unexpectedly, we also found that PTPN22 suppresses inflammation," said Wang. "Furthermore, we showed that the PTPN22 risk variant is defective in suppressing inflammatory arthritis."

"We anticipate that our findings will open new lines of investigation into how PTPN22 and other autoimmune disease 'risk' genes could work in infection-fighting and anti-inflammatory processes. Ultimately, we hope that the research will accelerate the drive toward better treatments and cures for autoimmune disorders," said Peterson.

More research is underway to determine the impact of the PTPN22 variant in the function of myeloid blood cells, particularly in patients suffering from lupus. Researchers are also comparing immune responses to influenza A vaccines between carriers and non-carriers of the PTPN22 variant. The goal is to understand the role of the disease-associated variant in mounting a normal response to immunizations against viruses.

This project was funded by grants from the National Institutes of Health (NIH), R01AR057781 (awarded to Peterson) and R01AI070544 (awarded to co-senior author Nunzio Bottini, M.D., Ph.D.), as well as from several other sources, including: the American College of Rheumatology Within Our Reach Campaign, the American Diabetes Association, the Alliance for Lupus Research, and the Lupus Foundation of Minnesota.

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit http://www.med.umn.edu to learn more.

Caroline Marin | EurekAlert!
Further information:
http://www.umn.edu
http://www.med.umn.edu

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>