Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M faculty find antimicrobials altering intestinal bacteria composition in swine

05.09.2012
Researchers from the University of Minnesota's College of Veterinary Medicine, concerned about the use of antibiotics in animal production, have found that antimicrobial growth promoters administered to swine can alter the kind of bacteria present in the animal's intestinal track, resulting in an accelerated rate of growth and development in the animals.

Antibiotics are routinely administered to swine to treat illness and to promote larger, leaner animals.

The results of the study, conducted by Richard Isaacson, Ph.D., microbiologist and professor within the University of Minnesota's College of Veterinary Medicine, alongside his U of M and University of Illinois research teams, were published yesterday in the journal PNAS.

To arrive at their results, the researchers tracked the effects of the antimicrobial Tylosin. The effects were observed in the feces of commercial pigs on two farms in southwestern Minnesota.

In young pigs receiving Tylosin, the intestinal bacterial composition changed and was similar to the composition naturally accredited to an older animal. These changes are linked to improved growth and stimulate an early maturation of the immune system.

"Bacterial composition drives the ability of animals to grow and thrive by contributing to digestion and metabolism," said Isaacson. "Because the bacteria in more mature animals break down growth-promoting components in food more efficiently, younger animals are able to achieve adult size and an adult-like metabolic rate more quickly."

According to Isaacson, the question has now shifted to whether or not researchers can use this new understanding to recreate this ideal-growth composition in swine produced for human consumption without antibiotic use.

The College of Veterinary Medicine improves the health and well-being of animals and people by providing high-quality veterinary training, conducting leading-edge research, and delivering innovative veterinary services.

Miranda Taylor | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>