Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of G research reveals how monarchs fly away home

27.07.2010
Monarch butterflies — renowned for their lengthy annual migration to and from Mexico — complete an even more spectacular journey home than previously thought.

New research from the University of Guelph reveals that some North American monarchs born in the Midwest and Great Lakes fly directly east over the Appalachians and settle along the eastern seaboard. Previously, scientists believed that the majority of monarchs migrated north directly from the Gulf coast.

The study appears in the recent issue of the scientific journal Biology Letters.

"It's a groundbreaking finding," said Ryan Norris, a Guelph professor in the Department of Integrative Biology who worked on the study with his graduate student Nathan Miller and two researchers from Environment Canada.

"It solves the long-standing mystery of why monarchs always show up later on the east coast compared to the interior," he said. "Importantly, it means that the viability of east coast populations is highly dependent upon productivity on the other side of the mountains."

Monarchs travel thousands of kilometres each year from wintering sites in central Mexico back to North America's eastern coast, a journey that requires multiple generations produced at various breeding regions.

Biologists had suspected that monarchs fly back from Mexico west-to-east over the Appalachians but no evidence existed to support the theory.

"Ours is the first proof of longitudinal migration," Miller said.

For the study, the researchers collected 90 monarch samples from 17 sites between Maine and Virginia in June and July of 2009. They also collected 180 samples of milkweed (the only plant monarch larvae can eat) from 36 sites along the eastern coast between May and July of that year.

They then used hydrogen and carbon isotope measurements to determine when and where the monarchs were born. Isotope values in milkweed vary longitudinally and can be measured in monarch wings, Miller said.

"It provides a natal, geospatial fingerprint that is fixed for the duration of the butterfly's lifespan."

The researchers discovered that 88 per cent of the monarchs sampled originated in the midwest and Great Lakes regions.

"This means that the recolonization of the east coast is by second-generation monarchs that hatched around the Great Lakes and then migrated eastward over the Appalachians," Miller said.

The monarch butterfly has been listed as a species of "special concern" in Canada since 1997. Past conservation efforts have often focused on breeding sites along a northward migration route.

"Our results suggest that this needs to change," Miller said. "We must target the Great Lakes region to conserve the east coast monarch populations."

Contact:
Prof. Ryan Norris
Department of Integrative Biology
519-824-4120, Ext. 56300
rnorris@uoguelph.ca
For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca, or Deirdre Healey, Ext. 56982 or d.healey@exec.uoguelph.ca

Deirdre Healey | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>