Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of G research reveals how monarchs fly away home

27.07.2010
Monarch butterflies — renowned for their lengthy annual migration to and from Mexico — complete an even more spectacular journey home than previously thought.

New research from the University of Guelph reveals that some North American monarchs born in the Midwest and Great Lakes fly directly east over the Appalachians and settle along the eastern seaboard. Previously, scientists believed that the majority of monarchs migrated north directly from the Gulf coast.

The study appears in the recent issue of the scientific journal Biology Letters.

"It's a groundbreaking finding," said Ryan Norris, a Guelph professor in the Department of Integrative Biology who worked on the study with his graduate student Nathan Miller and two researchers from Environment Canada.

"It solves the long-standing mystery of why monarchs always show up later on the east coast compared to the interior," he said. "Importantly, it means that the viability of east coast populations is highly dependent upon productivity on the other side of the mountains."

Monarchs travel thousands of kilometres each year from wintering sites in central Mexico back to North America's eastern coast, a journey that requires multiple generations produced at various breeding regions.

Biologists had suspected that monarchs fly back from Mexico west-to-east over the Appalachians but no evidence existed to support the theory.

"Ours is the first proof of longitudinal migration," Miller said.

For the study, the researchers collected 90 monarch samples from 17 sites between Maine and Virginia in June and July of 2009. They also collected 180 samples of milkweed (the only plant monarch larvae can eat) from 36 sites along the eastern coast between May and July of that year.

They then used hydrogen and carbon isotope measurements to determine when and where the monarchs were born. Isotope values in milkweed vary longitudinally and can be measured in monarch wings, Miller said.

"It provides a natal, geospatial fingerprint that is fixed for the duration of the butterfly's lifespan."

The researchers discovered that 88 per cent of the monarchs sampled originated in the midwest and Great Lakes regions.

"This means that the recolonization of the east coast is by second-generation monarchs that hatched around the Great Lakes and then migrated eastward over the Appalachians," Miller said.

The monarch butterfly has been listed as a species of "special concern" in Canada since 1997. Past conservation efforts have often focused on breeding sites along a northward migration route.

"Our results suggest that this needs to change," Miller said. "We must target the Great Lakes region to conserve the east coast monarch populations."

Contact:
Prof. Ryan Norris
Department of Integrative Biology
519-824-4120, Ext. 56300
rnorris@uoguelph.ca
For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca, or Deirdre Healey, Ext. 56982 or d.healey@exec.uoguelph.ca

Deirdre Healey | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>