Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado scientists create tiny RNA molecule with big implications for life's origins

23.02.2010
An extremely small RNA molecule created by a University of Colorado at Boulder team can catalyze a key reaction needed to synthesize proteins, the building blocks of life. The findings could be a substantial step toward understanding "the very origin of Earthly life," the lead researcher contends.

The smallest RNA enzyme ever known to perform a cellular chemical reaction is described in a paper published this week in the Proceedings of the National Academy of Sciences. The paper was written by CU graduate student Rebecca Turk, research associate Nataliya Chumachenko and Professor Michael Yarus of the molecular, cellular and developmental biology department.

Cellular RNA can have hundreds or thousands of its basic structural units, called nucleotides. Yarus' team focused on a ribozyme -- a form of RNA that can catalyze chemical reactions -- with only five nucleotides.

Tom Blumenthal, a professor and chair of the MCDB department, noted that Tom Cech, a Nobel laureate and distinguished professor of chemistry and biochemistry at CU, and Professor Norman Pace of MCDB, independently discovered that RNA can act as an enzyme, carrying out chemical reactions. That "pioneering work" has been carried on further by Yarus, Blumenthal said.

Because proteins are complex, one vexing question is where the first proteins came from, Blumenthal said. "It now appears that the first catalytic macromolecules could have been RNA molecules, since they are somewhat simpler, were likely to exist early in the formation of the first life forms, and are capable of catalyzing chemical reactions without proteins being present," he said.

"In this paper the Yarus group has made the amazing discovery that even an extremely tiny RNA can by itself catalyze a key reaction that would be needed to synthesize proteins," Blumenthal said. "Nobody expected an RNA molecule this small and simple to be able to do such a complicated thing as that."

The finding adds weight to the "RNA World" hypothesis, which proposes that life on Earth evolved from early forms of RNA. "Mike Yarus has been one of the strongest proponents of this idea, and his lab has provided some of the strongest evidence for it over the past two decades," Blumenthal said.

Yarus noted that the RNA World hypothesis was complicated by the fact that RNA molecules are hard to make. "This work shows that RNA enzymes could have been far smaller, and therefore far easier to make under primitive conditions, than anyone has expected."

If very simple RNA molecules such as the product of the Yarus lab could have accelerated chemical reactions in Earth's primordial stew, the chances are much greater that RNA could direct and accelerate biochemical reactions under primitive conditions.

Before the advent of RNA, most biologists believe, there was a simpler world of chemical replicators that could only make more of themselves, given the raw materials of the time, Yarus said.

"If there exists that kind of mini-catalyst, a 'sister' to the one we describe, the world of the replicators would also jump a long step closer and we could really feel we were closing in on the first things on Earth that could undergo Darwinian evolution," Yarus said.

"In other words, we may have taken a substantial step toward the very origin of Earthly life," he said. "However, keep well in mind that the tiny replicator has not been found, and that its existence will be decided by experiments not yet done, perhaps not yet imagined."

"Dr. Yarus has brought an innovative approach to bear on the key question of how complex processes originated," said Michael Bender, a biologist who oversees protein synthesis grants at the National Institutes of Health's National Institute of General Medical Sciences. "By showing that a tiny segment of RNA can perform a key step of protein synthesis, this study has provided evidence that fundamental, protein-mediated cellular processes may have arisen from RNA-based mechanisms."

Yarus' work is supported by a $415,610 grant from the NIH. In 2008 he was named a fellow of the American Association for the Advancement of Science for "meritorious efforts to advance science or its applications."

Michael Yarus | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>