Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twins are intriguing research subjects for Notre Dame biometircs researchers

09.09.2010
Each year in August, the aptly named town of Twinsburg, Ohio, is the site of the largest official gathering of twins in the world. Open to all multiples — identical and fraternal twins, triplets and quads from newborns to octogenarians — the weekend's events include food, live entertainment, a golf tournament, and a twins' parade.

The event also has become an important site for field research by Kevin Bowyer and Patrick Flynn of the University of Notre Dame's Department of Computer Science and Engineering. Flynn has a twin sister, making this research especially relevant to him.

Flynn and Bowyer have been developing and assessing image-based biometrics and multi-biometrics technologies since 2001, including first-of-kind comparisons of face photographs, face thermograms, 3-D face images, iris images, video of human gait, and even ear and hand shapes.

A biometric is a stable and distinctive physiological feature of a person that can be measured and used to identify that person; the fingerprint is the most familiar example.

In the wake of the terrorist attacks of Sept. 11, 2001, federal agencies have become increasingly interested in the feasibility of facial and iris recognition technologies.

Bowyer and Flynn have received two grants from the Federal Bureau of Investigation for research into the discrimination of identical twins. Even identical twins have unique irises. They are examining how iris biometrics performs in twins to confirm prior claims that biometrics is capable of differentiating between twins and to explore if human observers can make distinctions that current iris biometrics technologies cannot.

At the Twinsburg event, Bowyer and Flynn recruited volunteers to capture biometrical samples of identical twins. The volunteers sat at the center of a half-circle arc surrounded by five cameras which took high resolution color photographs from different angles. Volunteers also posed for iris and 3-D face imaging cameras.

After acquisition and assembly of these field-collected data, the researchers then presented unlabeled twin and non-twin image pairs in equal numbers to another group of human volunteers on campus. These volunteers were told to record their opinion of whether the image pairs came from a pair of twins or from unrelated individuals.

Bowyer's and Flynn's research indicates that the participants can correctly classify pairs of twins with 80 percent accuracy using only the appearance of the iris, a level that rules out the possibility of random guessing.

Their research suggests that iris images may be able to be used for purposes beyond those that are currently envisioned by the biometrics research community. The researchers plan on continuing to analyze data from the Twinsburg event to look closer at the feasibility of new types of automated iris image analysis. Initial results of their work appear in the Computer Vision and Pattern Recognition Biometrics Workshop and the International Carnahan Conference on Security Technology.

Contacts: Kevin Bowyer, Schubmehl-Prein Professor of Computer Science and Engineering, 574-631-9978, kwb@cse.nd.edu; Patrick Flynn, professor of computer science and engineering, 574-631-8803, flynn@nd.edu

Kevin Bowyer | EurekAlert!
Further information:
http://www.cse.nd.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>