Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twins are intriguing research subjects for Notre Dame biometircs researchers

09.09.2010
Each year in August, the aptly named town of Twinsburg, Ohio, is the site of the largest official gathering of twins in the world. Open to all multiples — identical and fraternal twins, triplets and quads from newborns to octogenarians — the weekend's events include food, live entertainment, a golf tournament, and a twins' parade.

The event also has become an important site for field research by Kevin Bowyer and Patrick Flynn of the University of Notre Dame's Department of Computer Science and Engineering. Flynn has a twin sister, making this research especially relevant to him.

Flynn and Bowyer have been developing and assessing image-based biometrics and multi-biometrics technologies since 2001, including first-of-kind comparisons of face photographs, face thermograms, 3-D face images, iris images, video of human gait, and even ear and hand shapes.

A biometric is a stable and distinctive physiological feature of a person that can be measured and used to identify that person; the fingerprint is the most familiar example.

In the wake of the terrorist attacks of Sept. 11, 2001, federal agencies have become increasingly interested in the feasibility of facial and iris recognition technologies.

Bowyer and Flynn have received two grants from the Federal Bureau of Investigation for research into the discrimination of identical twins. Even identical twins have unique irises. They are examining how iris biometrics performs in twins to confirm prior claims that biometrics is capable of differentiating between twins and to explore if human observers can make distinctions that current iris biometrics technologies cannot.

At the Twinsburg event, Bowyer and Flynn recruited volunteers to capture biometrical samples of identical twins. The volunteers sat at the center of a half-circle arc surrounded by five cameras which took high resolution color photographs from different angles. Volunteers also posed for iris and 3-D face imaging cameras.

After acquisition and assembly of these field-collected data, the researchers then presented unlabeled twin and non-twin image pairs in equal numbers to another group of human volunteers on campus. These volunteers were told to record their opinion of whether the image pairs came from a pair of twins or from unrelated individuals.

Bowyer's and Flynn's research indicates that the participants can correctly classify pairs of twins with 80 percent accuracy using only the appearance of the iris, a level that rules out the possibility of random guessing.

Their research suggests that iris images may be able to be used for purposes beyond those that are currently envisioned by the biometrics research community. The researchers plan on continuing to analyze data from the Twinsburg event to look closer at the feasibility of new types of automated iris image analysis. Initial results of their work appear in the Computer Vision and Pattern Recognition Biometrics Workshop and the International Carnahan Conference on Security Technology.

Contacts: Kevin Bowyer, Schubmehl-Prein Professor of Computer Science and Engineering, 574-631-9978, kwb@cse.nd.edu; Patrick Flynn, professor of computer science and engineering, 574-631-8803, flynn@nd.edu

Kevin Bowyer | EurekAlert!
Further information:
http://www.cse.nd.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>