Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor microvesicles reveal detailed genetic information

11.02.2011
Presence of 'jumping genes,' amplified oncogenes may be key to tumor progression

The Massachusetts General Hospital (MGH) research team that first discovered tumor-associated RNA in tiny membrane-enclosed sacs released into the bloodstream by cancer cells has now found that these microvesicles also contain segments of tumor DNA, including retrotransposons – also called "jumping genes" – that copy and insert themselves into other areas of the genome. The investigators' report, which has been published in Nature Communications, is the first to show that microvesicles are involved in transferring retrotransposons between cells.

"Retrotransposons' action of self-copying and reinserting themselves into the genome leads to genetic instability," says Johan Skog, PhD, who led the current study while an investigator in the MGH Neurology Service. "Many researchers have proposed this as a mechanism for genetic diversity and for evolution. Retrotransposons are known to be upregulated in cancer, and discovering them in microvesicles that can be found in all body fluids suggests they could be useful biomarkers to help understand tumor progression and monitor treatment response."

Skog was lead author of a 2008 study that first identified tumor-associated RNA in microvesicles, also called exosomes, released by the deadly adult brain tumor glioblastoma. To further investigate the ability of microvesicles to reflect the genetic status of tumors, in the current study the MGH team analyzed the nucleic acid contents of microvesicles from glioblastomas, from two types of pediatric brain tumors, and from malignant melanomas.

They found that the microvesicles contained tumor DNA as well as RNA and that microvesicles from one of the pediatric tumors studied had elevated levels of both DNA and RNA from the oncogene c-Myc, which correlated with the gene's expression in that tumor. "We showed that amplification of c-Myc was present in microvesicles whenever it was present in the donor cell and that microvesicle analysis can reveal oncogene expression in the original tumor," explains Leonora Balaj of MGH Neurology, the first author of the study.

High levels of retrotransposon-associated RNA sequences were also detected in tumor microvesicles, and the investigators found those microvesicles could transfer their contents into normal cells. "One of the most important functions of tumor-derived microvesicles may be modification of normal cells in the microenvironment to make them more supportive of tumor growth," says study co-author Xandra Breakefield, PhD, MGH Neurology and a professor of Neurology at Harvard Medical School.

Skog is now the director of research for Exosome Diagnostics, the company that licensed the work described in the 2008 paper, and continues to consult with Breakefield's research team. Additional co-authors of the Nature Communications report are Ryan Lessard, MGH Neurology; Lixin Dai, Johns Hopkins School of Medicine; and Yoon-Jae Cho, MD, and Scott Pomeroy, MD, PhD, Children's Hospital Boston. The study was supported by grants from the National Cancer Institute, the Wenner-Gren Foundation, and Stiftelsen Olle Engkvist Byggmastare.

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $700 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>