New tumor inhibitor for treatment of hereditary breast cancer shows promising results in mouse model

Treatment resulted in tumor regression and a strong increase in survival without signs of toxicity.

The inhibitor, which recently entered trials in human cancer patients, thus seems to have therapeutic potential for BRCA-defective tumors. Sven Rottenberg, Piet Borst and Jos Jonkers publish their results this week in PNAS Online Early Edition.

Resistance

Long-term treatment with AZD2281 in the mouse model did result in the development of drug resistance. This could however be reversed by coadministration of an other type of inhibitor, tariquidar. Furthermore, the researchers studied the effect of combined treatment with AZD2281 and cisplatin or carboplatin. This increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents.

Model

The researchers previously developed the mouse model to study BRCA1-associated breast tumors. BRCA1 defects are often observed in so called triple-negative tumors. No targeted therapy exists yet for this type of breast cancer, which account for about 15% of all breast tumors. The researchers now use the mouse model for preclinical evaluation of potential therapeutics that target tumors with BRCA1 defects and that might be useful for treatment of triple-negative cancers.

The results with AZD2281 show that the mouse model is not only useful for the investigation of the efficacy and toxicity of chemical compounds. Also the development, prevention and circumvention of drug resistance can be tested in the model.

Hence, intervention studies in the mouse model may help to predict the basis of resistance to novel therapeutics well in advance of the human experience. Ultimately, this may improve the clinical success rate for novel anticancer drugs.

Media Contact

Frederique Melman alfa

More Information:

http://www.nki.nl

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors