Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trojan horse drug therapy provides new approach to treating breast cancer

02.10.2012
Administrative assistant inspires Wake Forest chemistry researchers

When Linda Tuttle was diagnosed with breast cancer, she never imagined her experience would inspire her colleagues to design new treatments to tackle the disease.

An administrative assistant in the Department of Chemistry at Wake Forest University, Tuttle was more accustomed to talking to faculty and staff about meetings and course loads – not doctors' appointments and treatment plans.

But after her 2009 diagnosis, Tuttle's use of tamoxifen, a drug commonly used to treat breast cancer, inspired medicinal chemist Ulrich Bierbach to develop a targeted therapy that delivers a sneak attack to the disease, similar to a Trojan horse.

Trojan horses and targeted warheads

Current platinum-based drugs, such as the blockbuster drug cisplatin, do not work on the most common and most difficult-to-cure types of cancer, including lung and breast.

Building upon more than a decade's work in platinum-based drug research, Bierbach's team now designs synthetic hybrid molecules that more effectively tackle otherwise chemo-resistant cancers, including breast cancer. Results of this work, funded by the National Cancer Institute at the National Institutes of Health, appear in the September 13 issue of the Journal of Medicinal Chemistry.

Results also have led to tumor-seeking magic bullets that attach platinum to endoxifen, a close relative of tamoxifen, and quietly hitch a ride to the diseased cells, as if hidden in a Trojan horse.

"Platinum-based drugs cause severe damage to the DNA in cancer cells. Unfortunately, most cancers are smart enough to cut out the DNA damage and repair it, and that's the starting point for our structural design. We developed a compound that does a good job therapeutically by overwhelming the 'damage repair police' of the cell," said Bierbach, a chemistry professor who recently completed a four-year term with the California Breast Cancer Research Program.

Bierbach said that instead of killing certain cancer cells, cisplatin causes kinks in the DNA strand, which prompt cell enzymes to repair the damage. Wake Forest's new platinum-based molecule has a much higher affinity for DNA than cisplatin and twists it in a way that is not easily identified by the cancerous cell.

Initial preclinical studies have proven Bierbach's army of molecules to be 500 times more powerful than cisplatin in treating non-small cell lung cancer, 80-100 times for pancreatic cancer and up to 10 times for breast cancer.

"Within the next two years, we hope to turn our platinum-based drugs into safer, targeted warheads by attaching them to vehicles that will take them to a specific type of cancer and act as a guided missile," he said.

Hope on the horizon

Offering a safer way of delivery will be an important step in convincing industrial partners and the Food and Drug Administration (FDA) to move forward with clinical testing, which Bierbach estimates could be another three to four years away. Still, he and Tuttle remain encouraged given the progress to date.

For nearly three years, they met several times a week to explore Tuttle's treatment options, discuss possible side effects, and defuse her fears.

"My grandmother had breast cancer. We were even the same age when we were diagnosed," said Tuttle. "Now every time I have a strange pain or a headache, I can't help but wonder if I have another tumor."

But unlike her grandmother, whose late stage breast cancer metastasized, Tuttle's cancer was only stage 1 when a routine mammogram detected it. Today she is in remission following a lumpectomy and radiation therapy, and her quality of life has improved.

Though her prognosis looks promising, she and Bierbach still get together frequently in the halls of the chemistry department to share stories – hers of how she now lives every day to its fullest, and his of the lab's progress with its challenging research projects.

"Our professional relationship has definitely grown," said Tuttle. "I hope his research group stays as focused as it is now. Every advancement helps."

"Wake Forest's motto is Pro Humanitate, which means 'for humanity,' and it motivates our research group daily," Bierbach added. "Everyone knows someone who has been affected by cancer, and there's a pressing need for more effective and less toxic chemotherapies. The solution starts with some combination of academic curiosity and personal experience, and takes place in a lab that has synthetic chemistry expertise and a good deal of imagination to think about new ways to tackle cancer mechanistically at the molecular level. It's a fulfilling job, but it's even more rewarding to help someone you know."

Katie Neal | EurekAlert!
Further information:
http://www.wfu.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>