Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees, forests and the Eiffel tower reveal theory of design in nature

18.08.2008
What do a tree and the Eiffel Tower have in common?

According to a Duke University engineer, both are optimized for flow. In the case of trees, the flow is of water from the ground throughout the trunk, branches and leaves, and into the air. The Eiffel Tower's flow carries stresses throughout the structure without collapsing under its own weight or being downed by the wind.

For most engineers, the laws governing fluid and solid mechanics like these examples are like oil and water – they just don't mix.

However, a theory developed by Adrian Bejan, J.A. Jones Professor of Mechanical Engineering at Duke's Pratt School of Engineering and colleague Sylvie Lorente, professor of civil engineering at the University of Toulouse, France, explains how these disparate forces can co-exist within the same theory.

"We believe that the main function of the tree is to facilitate the flow of water from the ground and into the atmosphere," Bejan said. "To achieve that function, the tree is ideally designed to not only maximize the flow of water, but in order to be successful in the real world, it must also be able to withstand the stresses of the wind. It is exquisitely designed to do just that."

The constructal theory, which Bejan started describing in 1996, is based on the principle that flow systems evolve to balance and minimize imperfections, reducing friction or other forms of resistance, so that the least amount of useful energy is lost. While the tree is the most common model used by Bejan to explain the theory, other similar examples exist in nature, such as the rivers and streams that make up a delta or the intricate airways of the lungs.

In their latest theoretical formulation, the engineers focused on fundamental principles to explain the "designedness" of nature, or why things are constructed the way they are. Using the constructal theory, they deduced the structure of the individual tree, as well as its root system and its place in the forest, as a microcosm of the flow of water in nature.

This new application of the constructal theory was published early online in the Journal of Theoretical Biology. Bejan and Lorente's work was supported by the Air Force Office of Scientific Research.

"The tree is a physical flow architecture that has evolved to meet two main objectives – maximum mechanical strength against wind and maximum access for water coming from the ground through the tree and into the atmosphere," Bejan said. "In the larger sense, the forest itself is a flow system with the same mechanical properties and functions as the individual tree, facilitating the flow of water across the globe."

As the branches grow out from the trunk, the ratio of their circumferences decreases in proportion to the trunk's decreasing circumference as it rises.

"Winds come in many speeds, but their ultimate effect is cutting off trunks, branches and leaves, so whatever is too long or sticks out too much is shaved off," Bejan said. "So the pattern of the tree is the result of the never-ending assault by the wind."

The resulting patterns and proportions, like the similar ones of the Eiffel Tower, are predicted by the constructal theory, Bejan said.

"If the purpose of a tree was not to transport water, it would look like the Eiffel Tower," said Bejan, half jokingly. "It looks like Mr. (French engineer Gustave) Eiffel, without knowing it, designed a structure that corresponds with our constructal theory."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Bejan Design Eiffel Eiffel Tower Nature Theory atmosphere constructal microcosm root system

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>