Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree frogs chill out to collect precious water

30.09.2011
Research published in the October issue of The American Naturalist shows that Australian green tree frogs survive the dry season with the help of the same phenomenon that fogs up eyeglasses in the winter.

According to researchers from Charles Darwin University in Australia, tree frogs often plop themselves down outside on cool nights during the dry season in tropical Australia. When they return to their dens, condensation forms on their cold skin—just like it does on a pair of glasses when we come in from the cold. The researchers found that frogs absorb this moisture through their skin, which helps to keep them hydrated during periods of little or no rain.

Before this study, the frogs' dry-season excursions were a bit mysterious.

"Every once in a while, we would find frogs sitting on a stick under the open sky, on nights when it was so cold they could barely move," said Dr. Chris Tracy, who led the research. "It was a real puzzle."

Tracy and his colleagues thought this behavior might enable the frogs collect condensation, but the hypothesis had never been tested.

The researchers designed a series of experiments using real frog dens in eucalyptus trees and artificial ones made from PVC pipe. They wanted to see if the frogs could collect enough moisture through condensation to compensate for what they lost being in the cold. They found that a cold night out cost a frog as much as .07 grams of water. However, a frog could gain nearly .4 grams, or nearly 1 percent of its total body weight, in water upon returning to the warm den.

The researchers also tested how well a frog's skin could absorb water, and found that as much as 60 percent of each water drop could be absorbed.

The results show that frogs can use condensation to hydrate themselves. And in a place as arid as the Australian savannahs during the dry season, where there is essentially no rain from June through August, every little bit counts.

"When there's no water available, even a small amount can mean the difference between surviving the dry season or not," Tracy said.

Christopher R. Tracy, Nathalie Laurence, Keith A. Christian, "Condensation onto the Skin as a Means for Water Gain by Tree Frogs in Tropical Australia." The American Naturalist 178:4 (October 2011)

Since its inception in 1867, The American Naturalist has maintained its position as one of the world's most renowned, peer-reviewed publications in ecology, evolution, and population and integrative biology research. While addressing topics in community and ecosystem dynamics, evolution of sex and mating systems, organismal adaptation, and genetic aspects of evolution, AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses--all in an effort to advance the knowledge of organic evolution and other broad biological principles.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>