Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment for 'untreatable' progeria has roots in untargeted basic cell research

26.09.2012
ASCB posts background on basic biology discoveries behind Boston Children's clinical trial reporting significant slowing of rare rapid aging disorder in children

The good news widely reported this morning of positive results from a clinical drug trial at Boston Children's Hospital for the previously "untreatable" rapid aging disorder in children known as progeria has its scientific roots in basic biology discoveries made in recent years.

A paper published Monday in the Proceedings of the National Academy of Sciences (PNAS) reports that the use of farnesyl transferase inhibitors (FTI) significantly slows the progress of progeria, a rare and until now "untreatable" lethal genetic disorder. Also known as Hutchinson-Gilford Progeria Syndrome (HGPS), progeria has been described as out-of-control rapid aging in children. A ""normal"" baby born with HGPS will stop growing by 16-18 months and quickly develop signs of old age including hair loss, thin skin, osteoporosis and, most dangerously, progressive arteriosclerosis. By 10 years of age progeria children appear to be 80. The PNAS paper apparently shows a significant slowing of bone loss and blood vessel blockage.

This clinical trial grew out of the identification of the defective progeria gene, LMNA, in 2003 through the Human Genome Project and the laboratory of current NIH Director Francis Collins. But the link to defective proteins called lamins that make up the envelope surrounding the cell nucleus came about through "untargeted" basic cell biology research. Veteran lamin researchers remember having their grant applications dismissed by review panels as "boring" and irrelevant. But basic work by Robert Goldman of the Northwestern University School of Medicine and other nuclear lamin researchers around the world revealed that a greasy tag molecule called farnesyl accumulates on defective Lamin A proteins, eventually warping the structure of the entire nuclear envelope and disrupting the orderly production of genetic messages in the nucleus that direct normal growth.

The identification of the defective LMNA gene transformed progeria into a "laminopathy," a now growing class of diseases caused by problems with the once-irrelevant nuclear lamins. "Normal" aging is thought to involve many of the same processes as laminopathies and gives this new clinical trial implications beyond progeria. With the discovery of the lamin link, clinical researchers were suddenly looking for farnesyl transferase inhibitors (FTI) for progeria treatment. They zeroed in on Lonafarnib, an FTI drug developed by Merck that had been extensively tested and found safe for use in adults and children but ineffective against its brain cancer targets. In the two and a half year clinical trial, physicians at Boston Children's gave Lonafarnib to 26 children with progeria.

The American Society for Cell Biology has been reporting on progeria since 2006. In 2008, the ASCB Newsletter published a report on the proposed clinical drug trial. The ASCB has pulled together a file of these earlier reports for reporters and the general public interested in the deeper scientific background of progeria at: http://www.ascb.org/progeria-background.html

The PNAS paper was published online before print September 24, 2012, doi: 10.1073/pnas.1202529109 PNAS September 24, 2012 Gordon, Leslie B. et al, Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome

Reporters: For further information, contact ASCB Science Writer John Fleischman, jfleischman@ascb.org or 513-706-0212.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: ASCB Cancer treatment HGPS LMNA Lonafarnib PNAS Science TV drug trial

More articles from Life Sciences:

nachricht Accelerated reactions in condensed bio-matter?
19.06.2018 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Kidney tumor: Genetic trigger discovered
19.06.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Kidney tumor: Genetic trigger discovered

19.06.2018 | Life Sciences

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>