Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgenic Songbirds Provide New Tool to Understand the Brain

30.09.2009
You can learn a lot from an animal. By manipulating the DNA of mice, flies, frogs and worms, scientists have discovered a great deal about the genes and molecules behind many of life’s essential processes.

These basic functions often work about the same in people as they do in “model” animals. But if you want to study more sophisticated cognitive processes such as humans’ ability to learn language from one another, you need a more sophisticated organism. For the first time, researchers have devised a way to alter the genes of the zebra finch, one of a handful of social animals that learn to “speak” by imitating their fellows.

After decades of studying the behavior and anatomy of vocal learning, scientists will be able to use the technique to explore vocal learning at the molecular level. The new tool, reported online in the September 28 issue of PNAS Early Edition, may also reveal secrets about exactly how, when and why some neurons are replaced in the adult brain.

“The roadblock had been that you couldn’t manipulate the genes,” says Fernando Nottebohm, Dorothea L. Leonhardt Professor and head of the Laboratory of Animal Behavior at The Rockefeller University, where the research was conducted. “Ultimately, you have to understand how things are working at the most basic molecular level, and this will take our research there.”

Nottebohm, Research Associate Robert Agate and colleagues adapted a method used to alter quail genes for use in the finch. The researchers used an HIV-based lentivirus that is able to insert attached genes into the genome of the hosts it infects. To prove the method works, the scientists inserted genes that produce green fluorescent protein in cells throughout the body. They found that they had to inject at least 10 times as much of the viral vector into finch embryos than in quail for the genes to take root. But after refining the method, they produced several birds that had incorporated the genes into their germline cells, meaning they could pass them along to their offspring. These “founder” transgenic songbirds did not suffer any obvious side effects from the genetic experiment: They developed normally, learned to sing, and mated. But because of the fluorescent protein produced throughout their bodies, they glow green when exposed to a specific wavelength of blue light. The green can be best seen before the hatchlings’ feathers grow in, but can still be glimpsed in the eyes, legs and around the beaks of the older, feathered birds.

The transgenic songbirds will enable Nottebohm, who discovered neuronal replacement in the adult vertebrate brain and described the neural circuitry by which songbirds learn to sing, to investigate the genes that control these processes. “With transgenic songbirds, we hope to have a splendid tool to get into the molecular biology of vocal learning and neuronal replacement in an adult vertebrate brain,” Nottebohm says.

Brett Norman | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>