Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgenic Songbirds Provide New Tool to Understand the Brain

30.09.2009
You can learn a lot from an animal. By manipulating the DNA of mice, flies, frogs and worms, scientists have discovered a great deal about the genes and molecules behind many of life’s essential processes.

These basic functions often work about the same in people as they do in “model” animals. But if you want to study more sophisticated cognitive processes such as humans’ ability to learn language from one another, you need a more sophisticated organism. For the first time, researchers have devised a way to alter the genes of the zebra finch, one of a handful of social animals that learn to “speak” by imitating their fellows.

After decades of studying the behavior and anatomy of vocal learning, scientists will be able to use the technique to explore vocal learning at the molecular level. The new tool, reported online in the September 28 issue of PNAS Early Edition, may also reveal secrets about exactly how, when and why some neurons are replaced in the adult brain.

“The roadblock had been that you couldn’t manipulate the genes,” says Fernando Nottebohm, Dorothea L. Leonhardt Professor and head of the Laboratory of Animal Behavior at The Rockefeller University, where the research was conducted. “Ultimately, you have to understand how things are working at the most basic molecular level, and this will take our research there.”

Nottebohm, Research Associate Robert Agate and colleagues adapted a method used to alter quail genes for use in the finch. The researchers used an HIV-based lentivirus that is able to insert attached genes into the genome of the hosts it infects. To prove the method works, the scientists inserted genes that produce green fluorescent protein in cells throughout the body. They found that they had to inject at least 10 times as much of the viral vector into finch embryos than in quail for the genes to take root. But after refining the method, they produced several birds that had incorporated the genes into their germline cells, meaning they could pass them along to their offspring. These “founder” transgenic songbirds did not suffer any obvious side effects from the genetic experiment: They developed normally, learned to sing, and mated. But because of the fluorescent protein produced throughout their bodies, they glow green when exposed to a specific wavelength of blue light. The green can be best seen before the hatchlings’ feathers grow in, but can still be glimpsed in the eyes, legs and around the beaks of the older, feathered birds.

The transgenic songbirds will enable Nottebohm, who discovered neuronal replacement in the adult vertebrate brain and described the neural circuitry by which songbirds learn to sing, to investigate the genes that control these processes. “With transgenic songbirds, we hope to have a splendid tool to get into the molecular biology of vocal learning and neuronal replacement in an adult vertebrate brain,” Nottebohm says.

Brett Norman | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>