Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transcriptomic insights into the vertebrate phylotypic stage

18.05.2011
A new comparative transcriptomic analysis of four vertebrate species conducted by Naoki Irie in RIKEN's Laboratory for Evolutionary Morphology strongly suggests that the 'hourglass model' is the more accurate description of how the vertebrate phylotype manifests.

The concept of the phylotypic stage traces its roots back to early comparative observations of embryos from different vertebrate taxa, in which it was noted that embryonic morphologies appeared to converge on a shared body plan before veering off in specialized directions.

This gave rise to a profound debate over the evolutionary basis for this phenomenon; specifically, whether it could best be explained by a “funnel” model, in which the commonality of traits is highest at the earliest stages of embryogenesis, and gradually but unilaterally narrows over time, or an “hourglass” model, where homology is highest at a point later in development as the body plan is being established, and differs more widely before and after.

A new comparative transcriptomic analysis of four vertebrate species conducted by Naoki Irie in the Laboratory for Evolutionary Morphology (Shigeru Kuratani, Group Director) has now revealed that genetic expression is most highly conserved across taxa at the pharyngula stage of development. Published in Nature Communications, these latest findings strongly suggest that the hourglass model is the more accurate description of how the vertebrate phylotype manifests.

Irie decision to study this question using a gene expression approach broke with the long history of morphological comparisons. He sampled tissue from mouse, chicken, and frog embryos across multiple developmental stages to allow for comparisons of changes in gene expression, and further supplemented this data set with information from previously published transcriptomic studies in a fourth taxa, zebrafish, thus providing representative samples from mammal, bird, amphibian and fish species. He took advantage of the supercomputing capabilities at the RIKEN integrated Cluster of Clusters (RICC) for the processing power needed for comparison of this enormous set of data points.

As development proceeds at different paces in different species, and organs likewise emerge at different points, making straightforward comparisons can be extremely problematic. To overcome this challenge, Irie selected genes homologous in all four species, and made pairwise comparisons of gene expression profiles by microarray analyses. For each pairing, he found that the highest similarity was seen in intermediate stages of embryogenesis (from neurula to late pharyngula stages). More sophisticated computational analysis revealed that pharyngular embryos had the highest transcriptomic similarity of any stage.

To ascertain the detailed molecular characteristics of this phylotypic stage, the group went on to identify genes showing conserved expression during the pharyngula stage, but that were not constitutively expressed throughout embryogenesis, and identified 109 gene sets, including Hox genes, transcription factors, cell-cell signaling genes, and morphogens. Interestingly, within these sets, developmental genes were more highly represented than in sets with different expression profiles. The data generated in this study has been deposited in the ArrayExpress and Gene Expression Omnibus repositories.

“It seems that the notion that genetic programs underlying early development are resistant to change needs to be reconsidered in light of this data,” says Irie. “We’ll be interested in working out how early genetic flexibility is achieved while maintaining the robustness of gene expression at the phylotypic pharyngula stage.”

For more information, contact:

Douglas Sipp : sipp(at)cdb.riken.jp
TEL : +81-78-306-3043
RIKEN CDB, Office for Science Communications and International Affairs

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>