Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transcriptomic insights into the vertebrate phylotypic stage

A new comparative transcriptomic analysis of four vertebrate species conducted by Naoki Irie in RIKEN's Laboratory for Evolutionary Morphology strongly suggests that the 'hourglass model' is the more accurate description of how the vertebrate phylotype manifests.

The concept of the phylotypic stage traces its roots back to early comparative observations of embryos from different vertebrate taxa, in which it was noted that embryonic morphologies appeared to converge on a shared body plan before veering off in specialized directions.

This gave rise to a profound debate over the evolutionary basis for this phenomenon; specifically, whether it could best be explained by a “funnel” model, in which the commonality of traits is highest at the earliest stages of embryogenesis, and gradually but unilaterally narrows over time, or an “hourglass” model, where homology is highest at a point later in development as the body plan is being established, and differs more widely before and after.

A new comparative transcriptomic analysis of four vertebrate species conducted by Naoki Irie in the Laboratory for Evolutionary Morphology (Shigeru Kuratani, Group Director) has now revealed that genetic expression is most highly conserved across taxa at the pharyngula stage of development. Published in Nature Communications, these latest findings strongly suggest that the hourglass model is the more accurate description of how the vertebrate phylotype manifests.

Irie decision to study this question using a gene expression approach broke with the long history of morphological comparisons. He sampled tissue from mouse, chicken, and frog embryos across multiple developmental stages to allow for comparisons of changes in gene expression, and further supplemented this data set with information from previously published transcriptomic studies in a fourth taxa, zebrafish, thus providing representative samples from mammal, bird, amphibian and fish species. He took advantage of the supercomputing capabilities at the RIKEN integrated Cluster of Clusters (RICC) for the processing power needed for comparison of this enormous set of data points.

As development proceeds at different paces in different species, and organs likewise emerge at different points, making straightforward comparisons can be extremely problematic. To overcome this challenge, Irie selected genes homologous in all four species, and made pairwise comparisons of gene expression profiles by microarray analyses. For each pairing, he found that the highest similarity was seen in intermediate stages of embryogenesis (from neurula to late pharyngula stages). More sophisticated computational analysis revealed that pharyngular embryos had the highest transcriptomic similarity of any stage.

To ascertain the detailed molecular characteristics of this phylotypic stage, the group went on to identify genes showing conserved expression during the pharyngula stage, but that were not constitutively expressed throughout embryogenesis, and identified 109 gene sets, including Hox genes, transcription factors, cell-cell signaling genes, and morphogens. Interestingly, within these sets, developmental genes were more highly represented than in sets with different expression profiles. The data generated in this study has been deposited in the ArrayExpress and Gene Expression Omnibus repositories.

“It seems that the notion that genetic programs underlying early development are resistant to change needs to be reconsidered in light of this data,” says Irie. “We’ll be interested in working out how early genetic flexibility is achieved while maintaining the robustness of gene expression at the phylotypic pharyngula stage.”

For more information, contact:

Douglas Sipp : sipp(at)
TEL : +81-78-306-3043
RIKEN CDB, Office for Science Communications and International Affairs

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>