Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traffic Light in the Brain

10.02.2017

Research group offers new insights into the roles of different subareas in the prefrontal cortex

Whether the brain responds to an external stimulus or not depends significantly on the balance between areas of excitation and inhibition in the prefrontal cortex (PFC). Synaptic connections in the front of the cerebral cortex enable the brain to make a conscious decision on whether to react to a stimulus with movement or not.


Foto: Michael Veit

However, the roles of the individual regions in the PFC and how they work together in this decision-making process were unknown until now. An international team led by Stefanie Hardung from the research group of Professor Ilka Diester, a member of Bernstein Center Freiburg and the Cluster of Excellence BrainLinks-BrainTools, has now identified the roles five subareas in the prefrontal cortex play in making decisions on movement. Their results were now published in the journal Current Biology. This study may be of particular significance for the further investigation of impulse control disorders.

“We might compare these regions of the prefrontal cortex with a traffic light,” says Stefanie Hardung. “Specific subareas of the PFC are responsible for inhibition, while others take care of movement preparation and excitation.” In their experiment, the researchers employed a framework in which they trained transgenic rats in proactive and reactive stopping: “Reactive stopping refers to a situation in which the animal stops in reaction to an external signal. Proactive stopping, on the other hand, develops according to the internal goals of the subject.”

In their specific setup, the rats were trained to press a lever and to stop if a specific signal was given. Another signal indicated that the rat was supposed to keep pressing the lever. With the help of optogenetics, the research group was able to deactivate specific genetically altered brain cells using light. The scientists systematically switched off certain subareas of the PFC to test the influence of these respective regions on the decision-making process. In addition, optogenetics enabled the group to compare the results with the behavior of the same animals when all areas were intact.

The deactivation of specific PFC regions significantly altered the performance of the animals: The inhibition of regions in the infralimbic cortex (IL) or the orbitofrontal cortex (OFC) impeded the ability of the rats to react to external signals.

Deactivation of the prelimbic cortex (PL), on the other hand, caused a premature reaction in the majority of the rats. Furthermore, the researchers employed electrophysiological measuring methods and observed that neuronal activity in the PL significantly decreased prior to the premature reactions when all regions were intact.

These insights support the hypothesis that the infralimbic cortex and the prelimbic cortex play an opposing role to that of the orbitofrontal cortex: While the IL and the PL direct proactive behavior in reaction to external signals, the OFC controls reactive behavior. Thus, their study might serve as a basis for new approaches in the investigation of impulse control disorders such as attention deficit hyperactivity disorder (ADHD) or obsessive-compulsive disorders (OCD).

“Optogenetic approaches are less harmful to the animals than surgical or pharmacological interventions,” Hartung explains. “They allow us to deactivate different brain areas swiftly and reversibly without affecting circuit connectivity. Thus, our animal model might serve as an adequate framework for investigating impulse control disorders.”

Contact:
Michael Veit
Bernstein Center Freiburg
University of Freiburg
Phone: +49 (0)761/203-9322
E-Mail: michael.veit@bcf.uni-freiburg.de

Levin Sottru
Cluster of Excellence BrainLinks-BrainTools
University of Freiburg
Phone: +49 (0)761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau
Further information:
http://www.uni-freiburg.de/

Further reports about: BRAIN Traffic decision-making process optogenetics prefrontal cortex stimulus

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>