Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Down Organic Fraudsters

03.09.2014

Organic food is booming – but was the much more expensive tomato really grown organically? This can be found out by means of an analytic technique that scientists from the university of Würzburg are working on.

The demand for organic food is rising. It has almost tripled worldwide between 2002 and 2011, despite the fact that organic food is much more expensive than products grown the usual way. This has tempted some manufacturers and vendors to pass conventional goods off as organic – to the detriment of the consumer.


Organic tomatoes rooting in earth, here in a greenhouse of the Bavarian State Institute for Viticulture and Horticulture (LWG) in Veitshöchheim.

(Photo: LWG)


In conventional tomato cultivation, the plants are provided with water and fertiliser using hydroponics.

(Photo: LWG)

Current analytics is not good enough

Laboratory analyses are currently not completely capable of determining whether vegetables and fruit were really produced organically. The most reliable method at the moment is to examine the different forms (isotopes) of nitrogen in tomatoes, leek, or broccoli.

... more about:
»Food »Holzgrabe »LGL »Organic »Tracking »organic »tomato

“However, it is not always possible to achieve a clear result with this method,” says food chemist Monika Hohmann, doctoral student at the University of Würzburg and at the Bavarian Health and Food Safety Authority (LGL). One of the reasons is that certain fertilisation methods in organic farming prevent a clear distinction in the isotope analysis between the nitrogen composition resulting from organic and conventional fertilisers.

Magnetic resonance spectra as an alternative

This is why Hohmann developed a different method with promising first results: Using the so-called magnetic resonance spectroscopy (NMR), she created a kind of fingerprint of the contents of tomatoes, and the interpretation of the results showed significant differences between the organically and conventionally grown tomato varieties “Mecano” and “Tastery”. This is reported by Hohmann and her dissertation supervisors Norbert Christoph, Helmut Wachter, and Ulrike Holzgrabe in the “Journal of Agricultural and Food Chemistry”.

The scientists are collaborating on this project with the Bavarian State Institute for Viticulture and Horticulture (LWG) in Veitshöchheim, where tomatoes in the greenhouse are grown organically and conventionally under strictly defined conditions. Samples are taken regularly, pureed, and centrifugalised. Finally, Hohmann measures a so-called 1H-NMR spectrum of them.

More tomato varieties to be included

“We are building up a data base from the spectra and this enabled us to detect the differences between the organically grown tomatoes and the conventional ones in the test setup,” Hohmann says. Up until now, only two tomato varieties were examined by the doctoral student. As a next step, she also wants to analyse other varieties, because it became obvious that differences between the varieties must be taken into account. Is this method also suitable for other fruit and vegetables? This is another question that will have to be clarified.

The scientists see their current results as a good starting point for developing a reliable method for a clear identification of organically produced tomatoes and other foods. Fraudsters passing off conventional fruit and vegetables as “organic” will not really like this.

Supervision and funding of the research

Monika Hohmann conducts her doctoral thesis at the Bavarian Health and Food Safety Authority (LGL) in Würzburg. Her supervisors are Norbert Christoph and Helmut Wachter. Her mentor at the University of Würzburg is Professor Ulrike Holzgrabe, who runs the Department of Pharmaceutical Chemistry. One of Holzgrabe’s areas of expertise is the detection of counterfeit medications using NMR.

The project at the LGL is funded by the Bavarian Ministry for Environment and Consumer Protection.

1H NMR Profiling as an Approach To Differentiate Conventionally and Organically Grown Tomatoes, Monika Hohmann, Norbert Christoph, Helmut Wachter, and Ulrike Holzgrabe, J. Agric. Food Chem., 2014, 62 (33), pp 8530–8540, DOI: 10.1021/jf502113r

Contact

Bavarian Health and Food Safety Authority (LGL), Department R 4.1, Luitpoldstraße 1, 97082 Würzburg, T +49 (0) 9131 6808-2424, pressestelle@lgl.bayern.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

Further reports about: Food Holzgrabe LGL Organic Tracking organic tomato

More articles from Life Sciences:

nachricht Fruit fly studies shed light on adaptability of nerve cells
17.04.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Rare monkey photographed in Congo's newest national park, Ntokou-Pikounda
17.04.2015 | Wildlife Conservation Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>