Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic fruits hold the key to reproductive success

09.12.2014

A dopamine precursor in the toxic fruits of the morinda tree increases fertility in female Drosophila sechellia flies. Drosophila sechellia females, which lay their eggs on these fruits, carry a mutation in a gene that inhibits egg production.

The flies have very low levels of L-DOPA, a precursor of the hormone dopamine, which controls fertility; interestingly, large amounts of L-DOPA are contained in morinda fruits. Flies that were fed with L-DOPA can compensate for the genetic deficiency and considerably increase their reproductive success.


The Morinda citrifolia fruit, also called noni fruit, contains toxic acids. Nevertheless, the fruit is the sole host of Drosophila sechellia fruit flies. Anna Schroll


Ovary (specifically stained) of a female Drosophila sechellia fruit fly raised outside its host. Without L-DOPA in its food, oogenesis is halted.

Sofia Lavista Llanos, Max Planck Institute for Chemical Ecology

In the course of evolution, animals have become adapted to certain food sources, sometimes even to plants or to fruits that are actually toxic. The driving forces behind such adaptive mechanisms are often unknown. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now discovered why the fruit fly Drosophila sechellia is adapted to the toxic fruits of the morinda tree.

Drosophila sechellia females, which lay their eggs on these fruits, carry a mutation in a gene that inhibits egg production. The flies have very low levels of L-DOPA, a precursor of the hormone dopamine, which controls fertility; interestingly, large amounts of L-DOPA are contained in morinda fruits.

Flies that were fed with L-DOPA can compensate for the genetic deficiency and considerably increase their reproductive success. The same gene mutation also contributes to the resistance that these flies have to the toxic acids produced in the fruits and killing all other fruit fly species. (eLife, December 2014)

Drosophila sechellia is a fruit fly species closely related to Drosophila melanogaster. It is endemic to the Seychelles archipelago in the Indian Ocean and a specialist on its only host, Morinda citrifolia. The flies are strongly attracted by the fruits of the morinda tree: they feed on its fruits, and females prefer to lay their eggs on these. Contact with ripe morinda fruits kills other Drosophila species.

Female Drosophila sechellia flies produce fewer eggs than do other fruit flies. Therefore it is difficult to raise this species in the laboratory. However, if these flies are provided with morinda fruits or chemicals from these fruits, fertility in females increases considerably.

Sofia Lavista Llanos, Bill Hansson and their colleagues at the Department of Evolutionary Neuroethology at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found out why Drosophila sechellia is so dependent on the toxic fruits of their host plant. Feeding assays revealed that Drosophila sechellia females produced six times as many eggs when they were fed a diet of morinda fruit instead of the typical laboratory diet.

Egg production in the flies is controlled by the hormone dopamine. A dopamine deficiency reduces ovary size and the amount of eggs produced. In Drosophila sechellia, scientists found much lower levels of the precursor compound needed for dopamine biosynthesis than was found in other Drosophila species. This dopamine precursor is L-DOPA, a chemical that is used as a psychoactive drug to treat Parkinson’s disease. If L-DOPA is added to their diet, Drosophila sechellia females produce much more eggs than if the drug is not present. This effect is not achieved if dopamine itself is added to the food. The scientists were not too surprised when analyses revealed that morinda contains L-DOPA.

A genetic comparison with other Drosophila species showed that Drosophila sechellia carries a mutation in a gene called Catsup. This mutation inhibits egg production in females. “When we mutated the Catsup gene in the model species Drosophila melanogaster, the mutant flies showed the same characteristics as Drosophila sechellia: They produced fewer eggs and accumulated an enzyme which makes L-DOPA inside their developing eggs,” explains Sofia Lavista Llanos. On the other hand, the Catsup mutation provides Drosophila sechellia with an increased resistance to the toxic acids of the morinda fruit.

In Drosophila sechellia early resistance is partly achieved by the fact that the Catsup mutation makes the flies ovoviviparous, which means that females lay advanced embryos with a protective skin (cuticle) that shields the offspring from the toxic environment of their host plant. The Catsup mutation is also responsible for the bigger size of Drosophila sechellia embryos, which are almost three times as big as the embryos of other drosophilids. The scientists showed that this increases their hatchability on morinda, probably as a result of the augmented buffering capacity of the embryos.

Fruit flies are usually attracted by low levels of fruity odors, yet highly concentrated odors are repulsive to them. This is not true for Drosophila sechellia: “As we showed in earlier studies, these flies show a persistent attraction to extremely high concentrations of morinda odors without being repulsed,” says Bill Hansson. The scientists showed that feeding dopamine to vulnerable fruit fly species helped them cope with the toxic effects of morinda. Now they want to find out if dopamine also influences the strong attraction that Drosophila sechellia shows towards its only host.

The enzymes involved in the dopamine synthesis are conserved across species boundaries in invertebrates and vertebrates. “Drosophila sechellia could serve as a useful genetic model organism in which to study dopamine metabolism. Its close relationship to Drosophila melanogaster is a great advantage, because it provides over 50 years of accumulated knowledge,” says Sofia Lavista Llanos. The etiology and effects of dopamine deficiency are of particular interest in medical research: Dopamine is an important neurotransmitter and controls physiological processes, also in humans. Low levels of the “pleasure” hormone dopamine result in fatigue and depression. Patients with Parkinson’s disease also suffer from very low dopamine levels. Fundamental knowledge of the genetic and biochemical processes associated with L-DOPA deficiency in Drosophila sechellia may also contribute to understanding dopamine metabolism in humans. [AO]

Original Publication:
Lavista Llanos, S., Svatoš, A., Kai, M., Riemensperger, T., Birman, S., Stensmyr, M. C., Hansson, B. S. (2014). Dopamine drives Drosophila sechellia adaptation to its toxic host. eLife 2014;3:e03785, DOI: 10.7554/eLife.03785
http://dx.doi.org/10.7554/eLife.03785

Further Information:
Dr. Sofia Lavista Llanos, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57- 1465, E-Mail slavista-llanos@ice.mpg.de
Prof. Dr. Bill S. Hansson, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57- 1401, E-Mail hansson@ice.mpg.de

Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high resolution images via http://www.ice.mpg.de/ext/735.html


Weitere Informationen:

http://www.ice.mpg.de/ext/1176.html?&L=0
http://www.ice.mpg.de/ext/735.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>