Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic Breath Keeps Spiders Away

02.01.2014
Tobacco hornworm larvae exhale a small fraction of nicotine from ingested tobacco leaves as a defense signal to deter predatory spiders

Caterpillars use different strategies to protect themselves from their enemies; many are camouflaged, while others use their bright colors as warning signals, have stinging hairs or secrete toxic substances, some even take threatening postures.


Interaction between the caterpillar Manduca sexta and the spider Camptocosa parallela. The caterpillars nicotin breath frigthens the spider.

Danny Kessler; Grafics: Pavan Kumar and Sagar Pandit, MPI chem Ökol.


Spider Camptocosa parallela attacks a caterpillar.
Pavan Kumar, MPI chem. Ökol.

Scientists at the Max Planck Institute for Chemical Ecology have now discovered a previously unknown protective mechanism: Tobacco hornworm larvae can exhale a small fraction of nicotine they ingest as they feed on tobacco leaves.

To do so, they transfer some of the nicotine they ingest into their hemolymph (insect blood) from which a “defensive halitosis” is created that repels a major predator.

These insights were made possible by combining molecular techniques with a natural history approach in field experiments in the native habitat of the study organisms. (Proceedings of the National Academy of Sciences of the United States of America, December 30; 2013, DOI 10.1073/pnas.1314848111)

The importance of the ecosystem for studying gene functions

Understanding the function of genes is a central objective of biological research. Ultimately, genes function at the level of the organism, where their influence on an organism’s Darwinian fitness determines whether a gene is retained, modified or lost from genomes over evolutionary time. Gene silencing is a successful research method used to identify the function of individual genes and their relevance for the survival and fitness of an organism.

In addition to a gene’s biochemical and physiological roles that can be studied in the laboratory, the ecological role of a gene needs to be studied, and for this, there can be no better laboratory than the organism’s natural habitat. Scientists from the Department of Molecular Ecology headed by Ian Baldwin pioneer this approach and call it an unbiased, “ask the ecosystem” approach.

“Nature is our most important teacher,” Ian Baldwin emphasizes. “Nature is the arbitrator of who survives. Elucidation of gene functions is only possible if you study organisms in their native environment − including all the unknowns of the wild.”

For their field experiments, researchers planted tobacco plants that were deficient in producing nicotine. In addition, they used a plant-mediated RNAi technique to silence a cytochrome P450 enzyme in the midgut of tobacco hornworm larvae (see press release “Yellow Biotechnology: Using plants to silence insect genes in a high-throughput manner”, February 2, 2012) which is usually activated by nicotine ingested when the larvae feed on tobacco leaves. The scientists then observed what happened to caterpillars feeding on nicotine-deficient plants in order to compare their fate with those caterpillars that had ingested nicotine but lacked the active catalyzer for the toxin in their midgut.

Predatory spider assists the process of elucidating a defense mechanism

The function of the cytochrome P450 proved hard to reveal by laboratory-based experiments, but then the researchers received unexpected support from a wolf spider Camptocosa parallela. Surprisingly, the nocturnal predator preferably preyed not only on larvae that fed on nicotine-free leaves, but also preyed on their cytochrome P450-silenced conspecifics that were deficient in their response to nicotine in the food. The gene must therefore have played an important role in a spider defense mechanism that usually excludes the spider from the list of Manduca sexta’s enemies.

Further analysis revealed that the enzyme plays a role in transporting the ingested nicotine from midgut to the hemolymph which allows the nicotine to be exhaled out the spiracles, the nose-equivalents of the caterpillars. Caterpillars exhale a small fraction of this nicotine. And this functions as an anti-spider signal. Other predators of Manduca sexta, such as bugs or antlions, seem to be completely insensitive to this defensive halitosis.

Nicotine, the defensive substance in their host plant, is too toxic for the larvae to sequester. Most of it is excreted. That the larvae repurposes only a tiny amount of the toxin for their own defense in order to ward off spiders with a kind of toxic halitosis came as a surprise for the scientists. “This case of toxic breath as a defense is unique,” says Ian Baldwin. The example of the wolf spider illustrates the importance of combining molecular biology and natural history to understand the function of genes at the level of the organism. [AO]

Original Publication:
Kumar, P., Pandit, S. S., Steppuhn, A., Baldwin, I. T. (2014). A natural history driven, plant mediated RNAi based study reveals CYP6B46’s role in a nicotine-mediated anti-predator herbivore defense. Proceedings of the National Academy of Sciences of the United States of America. DOI 10.1073/pnas.1314848111

http://dx.doi.org/10.1073/pnas.1314848111

Further Information:
Prof. Dr. Ian T. Baldwin, Max-Planck-Institut für chemische Ökologie, E-Mail baldwin [at] ice.mpg.de, Tel.: +49 3641 57 1101

Download of movies and high resolution pictures on www.ice.mpg.de/ext/735.html

Angela Overmeyer | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>