Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toronto researchers first to discover new genetic clue in the development of rheumatoid arthritis

15.08.2011
Findings will help lead to personalized therapies for common, complex illnesses characterized by abnormal immune responses

Scientists at Mount Sinai Hospital, in collaboration with researchers at the University of Toronto, University Health Network and McGill University have obtained significant new insights into the causes of rheumatoid arthritis (RA) and other autoimmune disorders including type 1 diabetes, lupus and Graves disease.

The findings represent a key initial step in realizing the full potential of genomics and personalized medicine.

In a study published online today in Nature Genetics, Dr. Katherine Siminovitch and her team identified the exact means by which an alteration in the gene PTPN22 increases risk for RA and other autoimmune disorders. The study used advanced genomics technologies that enable testing of millions of genetic markers in a single experiment to identify genes, such as PTPN22, that confer risk for disease.

The team then generated a mouse genetic model to show how the PTPN22 gene mutation impairs immune cell function and then validating their findings in humans, taking their discovery from the laboratory bench to the clinic.

The result: a more accurate understanding of how autoimmune conditions develop, and how new diagnostic tests and targeted therapies can be designed for better symptom control and potential cure.

"Our findings are particularly exciting because this study sets a new precedent for studying arthritis and other autoimmune disorders," said lead author Dr. Siminovitch, Senior Investigator and the Sherman Family Research Chair in Genomic Medicine at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital, a professor at the University of Toronto, and Director of the Fred A. Litwin & Family Centre in Genetic Medicine.

"This is one of the first studies in which we have traced the steps that connect a specific genetic lesion to the development of a common, complex autoimmune condition."

Led by Dr. Siminovitch, the group used genetically modified mice in which PTPN22 had been altered to mimic a genetic mutation found in many RA patients. The effects of this change on immune cells were observed in the mice, and the studies were then repeated in human blood samples from patients with and without RA. By this means, the group honed in on the impact of a key protein called Lyp/Pep that—in healthy cells—prevents the hyper-immune responses that lead to autoimmune disorders. The group found that this gene mutation leads to decreased levels of Lyp, thereby removing a natural brake that normally prevents the inflammatory processes underlying RA and many other autoimmune conditions.

"Measuring levels of this protein will help us monitor disease severity in patients with autoimmune disorders, test the effects of various therapies including new drugs, and determine which treatments work best in specific patients," said Dr. Edward Keystone, co-author of the study and Director of the Rebecca MacDonald Centre for Arthritis and Autoimmune Disease at Mount Sinai Hospital. "We are truly seeing genomics in action with this study, and the results give us new hope for improving patient outcomes."

Dr. Keystone emphasized the importance of this type of research to the practice of medicine in general, noting that advances in genetics knowledge are allowing for earlier diagnoses and more personalized treatments that give patients better outcomes.

"Using the powerful genetic tools now available, previously cryptic diseases are being dissected and their underlying causes identified," said Dr. Jim Woodgett, the Lunenfeld's Director of Research. "Drs. Siminovitch and Keystone are at the leading edge of employing these genomic approaches for the benefit of patients, seamlessly combining their research skills with clinical insights."

Millions of Canadians are affected by autoimmune disorders that are a common cause of long-term pain and/or disability.

The study was funded by Canadian Institutes of Health Research, the Canadian Arthritis Network, and the Ontario Research Fund.

About Mount Sinai Hospital

Mount Sinai Hospital is an internationally recognized, 472-bed acute care academic health sciences centre affiliated with the University of Toronto. It is known for excellence in the provision of compassionate patient care, innovative education, and leading-edge research. Mount Sinai's Centres of Excellence include: Daryl A. Katz Centre for Urgent & Critical Care; Lawrence and Frances Bloomberg Centre for Women's & Infants' Health; Christopher Sharp Centre for Surgery & Oncology; Centre for Inflammatory Bowel Disease; Centre for Musculoskeletal Disease and the Samuel Lunenfeld Research Institute.

About the Samuel Lunenfeld Research Institute of Mount Sinai Hospital

The Samuel Lunenfeld Research Institute of Mount Sinai Hospital, a University of Toronto affiliated research centre established in 1985, is one of the world's premier centres in biomedical research. Thirty-six principal investigators lead research in diabetes, cancer biology, epidemiology, stem cell research, women's and infants' health, neurobiology and systems biology.

Karin Fleming | EurekAlert!
Further information:
http://www.lunenfeld.ca
http://www.mountsinai.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>