Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tool Isolates RNA within Specific Cells

19.05.2009
A team of University of Oregon biologists, using fruit flies, has created a way to isolate RNA from specific cells, opening a new window on how gene expression drives normal development and disease-causing breakdowns.

While DNA (deoxyribonucleic acid) provides an identical genetic blueprint in every cell, RNA (ribonucleic acid) decodes genetic instructions that turn protein molecules on and off in different cell types.

The new tagging method, tested in a variety of subsets of Drosophila brain cells, is described in a paper put on line ahead of regular publication by the journal Nature Methods. Instead of scientists needing to physically separate cell types, they now can inject a chemically modified gene from the one-celled organism Toxoplasma gondii and activate it in only one cell type within a tissue. Only newly generated RNA in this cell type is then tagged and isolated.

"By analyzing RNA from different cell types, we can begin to understand how cellular differences are generated," said lead author Michael R. Miller, a National Science Foundation-funded doctoral student in the lab of Chris Doe, a UO biologist and Howard Hughes Medical Institute (HHMI) investigator. "Our new TU-tagging method should be useful for isolating cell-type specific RNA from other organisms, including mammals, and should be useful in broad areas of research including studies of development, neurobiology and disease."

The new non-toxic, non-invasive method makes it possible to "listen in" to the messages -- in fact, messenger RNA -- that the nucleus is sending each cell, without perturbing the cell, Doe said. "It is much like eavesdropping on a phone conversation, rather than pulling the person out of the house for questioning. The cell has no idea that its RNAs are being 'tagged' for isolation and study. That's good, because we get a more accurate idea of what the cell is saying."

That, Doe added, could be helpful for 'listening' to host cells before and after the initiation of a disease to determine how cells respond, or, for example study healthy immune cells versus bacterially-challenged immune cells or neurons before they learn a task and after they learn a task to determine what changes in the cell are caused by the experience.

The new UO-developed tool builds on work led by co-author Michael D. Cleary, who as a doctoral student at Stanford University unveiled the T. gondii-based approach for use in analyzing RNA synthesis and decay in 2005 in Nature Biotechnology. Cleary, now a faculty member at the University of California, Merced, worked on the UO project as a postdoctoral fellowship funded by the National Institutes of Health and HHMI.

Cleary's group built its tool with the enzyme uracil phosphoribosyltransferase (UPRT), a nucleotide salvage enzyme that prepares nucleotides for incorporation into newly synthesized RNA. By altering the nucleotide analog 4-thiouracil, the UPRT enzyme caused RNA to become tagged with thiouracil (TU), allowing the "TU-tagged" RNA to be purified from untagged RNA.

In Doe's lab, Miller, Cleary and research technician Kristin J. Robinson of the UO's institutes of Neuroscience and Molecular Biology manipulated Drosophila so that they would only express UPRT in specific target cells. The group tested the new approach in embryos, larvae and adults using microarray technology to detect cell type-specific gene expression. The researchers say the method should work in other systems, including vertebrates, by using gene transfer, retroviral delivery, electrical pulses of molecules through cell membranes, or messenger RNA injection.

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Video: http://www.youtube.com/watch?v=IFTYrI048uE

Sources: Chris Doe, professor of biology and HHMI investigator, 541-346-4877, cdoe@uoregon.edu; Michael R. Miller, UO doctoral student, mmiller@uoregon.edu

Jim Barlow | Newswise Science News
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>