Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tipping the balance of immune response

14.09.2009
Hybrid mice help researchers zoom in on a gene with a potential role in controlling allergic responses

When the immune system encounters a potential threat, antigen-presenting cells deliver chunks of protein from the invading pathogen to naive helper T cells.

These naive cells respond by differentiating into one of two classes of mature helper T cells: TH1 cells, which mobilize the immune system against viruses and other intracellular pathogens, and TH2 cells, which drive the response against blood-borne threats, such as the parasitic disease leishmaniasis.

Interleukin-4 (IL-4), one of a class of signalling factors known as cytokines, drives TH2 differentiation and triggers secretion of additional IL-4, resulting in a positive feedback loop that fuels TH2 production while suppressing TH1 production. The degree of initial IL-4 production varies considerably between individuals and the resulting ‘TH2 bias’ can have serious clinical implications. “TH2 bias is thought to be a mirror of allergic response, because many TH2 cytokines tightly associate with pathology of allergy,” says Masato Kubo, of the RIKEN Research Center for Allergy and Immunology in Yokohama.

TH2 bias also varies between different mouse strains, a fact that Kubo, Mark Bix of St. Jude’s Children’s Research Hospital in Memphis, USA, and colleagues exploited in a recent effort to identify determinants for this trait1. It was known that BALB/c strain mice have a high TH2 bias—producing large quantities of IL-4 following T cell activation—while B10.D2 mice have a 50-fold lower bias. However, a hybrid BALB/c strain generated by Kubo and Bix that contains a chunk of chromosome 16 from the B10.D2 strain also exhibited low bias, suggesting that this segment includes a gene pertinent to this characteristic.

Closer analysis spotlighted the Mina gene as a likely suspect; analysis of various mouse strains revealed that Mina gene activity and levels of Mina protein were inversely correlated with TH2 bias. Bix and Kubo’s team subsequently determined that Mina assembles into a larger multi-protein complex that directly binds to and inhibits the gene encoding IL-4, supporting a key role for this factor in TH2 bias.

The team’s analysis also identified nearly two dozen sequence variations in Mina that correlate with gene activity levels. These so-called single-nucleotide polymorphisms (SNPs) could provide useful diagnostic tools, and Kubo and Bix are now exploring this potential. “We have already done large-scale SNP analysis with Japanese and US populations,” says Kubo. “The human Mina locus has several SNPs, and some of them have weak correlation with atopic asthma in the Japanese population, but not in the US [population].”

The corresponding author for this highlight is based at the Laboratory for Signal Network, RIKEN Research Center for Allergy and Immunology

Do you have Feedback?

1. Okamoto, M., van Stry, M., Chung, L., Koyanagi, M., Sun, X., Suzuki, Y., Ohara, O., Kitamura, H., Hijikata, A., Kubo, M. & Bix, M. Mina, an IL4 repressor, controls T helper type 2 bias. Nature Immunology 10, 872–879 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6043
http://www.researchsea.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>