Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Bubbles Clean Oil from Water

17.11.2009
Small amounts of oil leave a fluorescent sheen on polluted water. Oil sheen is hard to remove, even when the water is aerated with ozone or filtered through sand.

Now, a University of Utah engineer has developed an inexpensive new method to remove oil sheen by repeatedly pressurizing and depressurizing ozone gas, creating microscopic bubbles that attack the oil so it can be removed by sand filters.

“We are not trying to treat the entire hydrocarbon [oil] content in the water – to turn it into carbon dioxide and water – but we are converting it into a form that can be retained by sand filtration, which is a conventional and economical process,” says Andy Hong, a professor of civil and environmental engineering.

In laboratory experiments reported online this week in the journal Chemosphere, Hong demonstrated that “pressure-assisted ozonation and sand filtration” effectively removes oil droplets dispersed in water, indicating it could be used to prevent oil sheen from wastewater discharged into coastal waters.

Hong says the method – for which patents are pending – also could be used to clean a variety of pollutants in water and even soil, including:

-- So-called “produced water” from oil and gas drilling sites on land. Such oily water normally is re-injected underground. “If we have technology to clean it, it could be put into beneficial uses, such as irrigation, especially in arid regions where oil and gas tend to be produced,” says Hong.

-- Water from mining of tar sands and oil shale.

-- Groundwater contaminated by MTBE, a gasoline additive that reduces harmful vehicle emissions but pollutes water due to leaking underground gasoline storage tanks.

-- “Emerging contaminants,” such as wastewater polluted with medications and personal care products.

-- Soil contaminated with polychlorinated biphenyls (PCBs, from electrical transformers) or polycyclic aromatic hydrocarbons (PAHs, from fuel burning). Water and contaminated soil would be mixed into slurry, and then treated with the new method.

-- Heavy metals in soil. Instead of ozone, air and metal-grabbing chelating agents would be pressurized with a slurry of the contaminated material.

-- Refinery wastewater and oil spills at refineries or on waterways. The spill could be vacuumed, and then treated with the new method on-site or on a barge.

Hong conducted the study with two University of Utah doctoral students – Zhixiong Cha, who has earned his Ph.D., and Chia-Jung Cheng – and with Cheng-Fang Lin, an environmental engineering professor at National Taiwan University.

Zapping Oily Water with Microbubbles from Ozone under Pressure

Hong says his method uses two existing technologies – ozone aeration and sand filtration – and adds a big change to the former. Instead of just bubbling ozone through polluted water, Hong uses repeated cycles of pressurization of ozone and dirty water so the ozone saturates the water, followed by depressurization so the ozone expands into numerous microbubbles in the polluted water, similar to the way a carbonated beverage foams and overflows if opened quickly.

The tiny bubbles provide much more surface area – compared with larger bubbles from normal ozone aeration – for the oxygen in ozone to react chemically with oil. Hong says pollutants tend to accumulate on the bubbles because they are not very water-soluble. The ozone in the bubble attacks certain pollutants because it is a strong oxidant.

The reactions convert most of the dispersed oil droplets – which float on water to cause sheen – into acids and chemicals known as aldehydes and ketones. Most of those substances, in turn, help the remaining oil droplets clump together so they can be removed by conventional sand filtration, he adds.

In his study, Hong showed the new method not only removes oil sheen, but also leaves the treated water so that any remaining acids, aldehydes and ketones are more vulnerable to being biodegraded by pollution-eating microbes.

“These are much more biodegradable than the parent compounds,” he says.

Hong says the water is clean enough to be discharged after the ozonation and sand filtration, but that some pollution sources may want to use conventional methods to biodegrade remaining dissolved organic material.

Details of the Experiments

Hong conducted his experiments using a tabletop chemical reactor that contained about a quart of oily water made by mixing deionized water with crude oil from the Rangely oil field in northwestern Colorado.

Ozone was produced by passing dry air through a high-voltage field, converting oxygen gas, which has two oxygen atoms, into ozone, which has three.

The ozone was pressurized to 10 times atmospheric pressure, about 150 pounds per square inch, which compares with inflation pressures of about 100 PSI for Hong’s bicycle and 35 to 40 PSI for many automobile tires.

He found oily water was cleaned most effectively by pressurizing and depressurizing it with ozone gas 10 times, then filtering it through sand, then putting the water through 20 more pressurized ozone cycles, and then filtering it again through sand. That was at flow rates of 10 to 20 liters per minute [about 2.6 to 5.3 U.S. gallons per minute] in his laboratory apparatus.

Hong tested how well the ozonation worked by measuring chemical and biological oxygen demands of treated water samples. Both indirectly measure organic contents in the water. Hong also used mass spectrometry to identify what contaminants remained in the water.

He found that his most effective procedure removed 99 percent of the turbidity from the “produced water” – leaving it almost as clear as drinking water – and removed 83 percent of the oil, converting the rest to dissolved organic acids removable by biodegradation.

A Tryout in China

With success in the laboratory, Hong now plans for larger-scale pilot tests.

“It is economical and it can be scaled up,” he says.

One such test will be done in Wuxi, China, where a prototype desk-sized device capable of treating 200 liters [53 U.S. gallons] at a time will be tested at three to five polluted industrial sites that the government vacated for redevelopment, Hong says.

Meanwhile, the University of Utah Research Foundation has entered into options to license the technology to Miracotech, Inc., of Albany, Calif., and 7Rev, L.P., a Salt Lake City venture capital group, so the companies can bring the technology to market.

Hong says other methods of treating oil well “produced water” have met with varying degrees of success. They include centrifuges, membranes, regular ozonation and air bubbles to float off contaminants. But all have drawbacks, such as inability to handle dissolved oil or high levels of oil, or susceptibility to quickly getting fouled by the oil.

Neither ozonation nor sand filtration alone has been able to effectively treat oily “produced water.” Hong says long-chain oil molecules don’t react with ozone easily without his pressure treatment. And sand filters alone cannot remove oil.

For more information on the University of Utah College of Engineering, see http://www.coe.utah.edu

Contacts:

-- Andy Hong, professor of civil and environmental engineering –
office (801) 581-7232, cellular (801) 999-0083, hong@civil.utah.edu
-- Lee Siegel, science news specialist, University of Utah Public Relations –
office (801) 581-8993, cellular (801) 244-5399, leesiegel@ucomm.utah.edu

Andy Hong | Newswise Science News
Further information:
http://www.utah.edu
http://www.coe.utah.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>