Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Timing of Nerve Impulses Supports Precise Spatial Navigation

03.04.2012
As an animal navigates through its environment, the brain maps space onto time, so that the impulses of certain nerve cells tend to shift relative to an internal clock.
Researchers at the Bernstein Centers at HU Berlin and LMU Munich have now shown that this timing code can be reliably read out. Their research focuses on a recently discovered class of nerve cells that become active at specific locations, which are arranged like nodes of a hexagonal grid. In contrast to previous approaches, the researchers consider the neural activity during single runs of the animal, thereby showing that it can use the timing information contained in the neuronal discharge to control and guide its behavior.

To learn how we human beings find our way in the world, neurobiologists have long used rats and mice as model systems. Recently, “grid cells” have been discovered in rodents that actively navigate through their environment. A grid cell fires whenever the rat or mouse is at a node of an imaginary hexagonal grid overlaid on the topography of the outside world. In the past, one commonly assumed that the brain computes the animal’s spatial location from the time-course of the grid cells’ average neural activity, as the timing of individual nerve impulses was believed to be too imprecise. However, researchers at the Bernstein Centers at Humboldt-Universität zu Berlin and Ludwig-Maximilians-Universität München have now shown the opposite to be true: by taking the time sequence of nerve impulses into consideration, one can determine the animal’s position to twice the accuracy than by the number of impulses alone. The timing pattern is clearly evident already in the grid cell’s activity during a single run. “The animal can, therefore, use the precise temporal information to guide its behavior,” says neuroscientist Prof. Andreas Herz, who directed the study.

The discovery of grid cells in the laboratory of Prof. Edvard Moser (Trondheim) in 2004 has captivated many scientists. Not only do average activity patterns of these cells regularly repeat across space, producing hexagonal grids in the spatial map of firing rates, but their temporal patterns of firing are also elaborate. The rhythmic activity on a coarse scale, as measured by the local EEG, organizes and defines the fine temporal structure of the firing in single grid cells: as the animal approaches one of the imaginary nodes of the hexagonal lattice, the cell first becomes active only during the late phase of the EEG oscillation. As the animal continues to move, the nerve impulses shift in time to ever earlier phases.

Until now, this phenomenon was only observed after averaging the data over many runs of the animal, so is the phenomenon biologically relevant or just a side effect of rhythmic activity in this brain area? The new analysis by Reifenstein et al. reveals that the temporal shift in a grid cell’s impulses is not only present on single runs, but the shift is even more pronounced than in data pooled over many runs. Spatial relationships translate into temporal relationships, which can then be used by the brain to refine its representation of space; the level of average activity in grid cells, on the other hand, conveys less information. Such findings could well generalize to other areas in the brain; even if the average activity is maintained at a constant level, neurons can use the dimension of time to encode many different signals and improve the brain’s capacity to process information.

In the course of this study, the researchers reanalyzed data from previous experimental studies from the group of Prof. Moser. Following a modern trend in the neurosciences, the data from this group were made freely available on the Internet, which made further animal experiments unnecessary.

The Bernstein Centers Berlin and Munich form part of the National Bernstein Network for Computational Neuroscience (NNCN). The NNCN was founded by the BMBF with the goal to develop, network, and bundle the knowledge and expertise in the new field of computational neuroscience. The network is named in honor of the German physiologist

Trajectory (black curved line) of a rat moving in a circular environment, together with the locations where a grid cell discharged (red dots). These locations form a hexagonal grid.
© Eric Reifenstein/HU Berlin

Julius Bernstein (1835-1917).

Original Publication:
Reifenstein E T, Kempter R, Schreiber S, Stemmler M B, Herz A V M (2012): Grid Cells in Rat Entorhinal Cortex Encode Physical Space with Independent Firing Fields and Phase Precession at the Single-Trial Level. PNAS, doi: 10.1073/pnas.1109599109

For further information, please contact:
Prof. Dr. Andreas V. M. Herz
Department Biologie II
Ludwig-Maximilians-Universität München
und Bernstein Zentrum für Computational Neuroscience München
Grosshadernerstr. 2
82152 Planegg-Martinsried
Tel: 0049-89-2180-74801
email: herz@bio.lmu.de

Johannes Faber | idw
Further information:
http://www.bccn-muenchen.de/
http://www.bccn-berlin.de/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>