Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Timing of Nerve Impulses Supports Precise Spatial Navigation

03.04.2012
As an animal navigates through its environment, the brain maps space onto time, so that the impulses of certain nerve cells tend to shift relative to an internal clock.
Researchers at the Bernstein Centers at HU Berlin and LMU Munich have now shown that this timing code can be reliably read out. Their research focuses on a recently discovered class of nerve cells that become active at specific locations, which are arranged like nodes of a hexagonal grid. In contrast to previous approaches, the researchers consider the neural activity during single runs of the animal, thereby showing that it can use the timing information contained in the neuronal discharge to control and guide its behavior.

To learn how we human beings find our way in the world, neurobiologists have long used rats and mice as model systems. Recently, “grid cells” have been discovered in rodents that actively navigate through their environment. A grid cell fires whenever the rat or mouse is at a node of an imaginary hexagonal grid overlaid on the topography of the outside world. In the past, one commonly assumed that the brain computes the animal’s spatial location from the time-course of the grid cells’ average neural activity, as the timing of individual nerve impulses was believed to be too imprecise. However, researchers at the Bernstein Centers at Humboldt-Universität zu Berlin and Ludwig-Maximilians-Universität München have now shown the opposite to be true: by taking the time sequence of nerve impulses into consideration, one can determine the animal’s position to twice the accuracy than by the number of impulses alone. The timing pattern is clearly evident already in the grid cell’s activity during a single run. “The animal can, therefore, use the precise temporal information to guide its behavior,” says neuroscientist Prof. Andreas Herz, who directed the study.

The discovery of grid cells in the laboratory of Prof. Edvard Moser (Trondheim) in 2004 has captivated many scientists. Not only do average activity patterns of these cells regularly repeat across space, producing hexagonal grids in the spatial map of firing rates, but their temporal patterns of firing are also elaborate. The rhythmic activity on a coarse scale, as measured by the local EEG, organizes and defines the fine temporal structure of the firing in single grid cells: as the animal approaches one of the imaginary nodes of the hexagonal lattice, the cell first becomes active only during the late phase of the EEG oscillation. As the animal continues to move, the nerve impulses shift in time to ever earlier phases.

Until now, this phenomenon was only observed after averaging the data over many runs of the animal, so is the phenomenon biologically relevant or just a side effect of rhythmic activity in this brain area? The new analysis by Reifenstein et al. reveals that the temporal shift in a grid cell’s impulses is not only present on single runs, but the shift is even more pronounced than in data pooled over many runs. Spatial relationships translate into temporal relationships, which can then be used by the brain to refine its representation of space; the level of average activity in grid cells, on the other hand, conveys less information. Such findings could well generalize to other areas in the brain; even if the average activity is maintained at a constant level, neurons can use the dimension of time to encode many different signals and improve the brain’s capacity to process information.

In the course of this study, the researchers reanalyzed data from previous experimental studies from the group of Prof. Moser. Following a modern trend in the neurosciences, the data from this group were made freely available on the Internet, which made further animal experiments unnecessary.

The Bernstein Centers Berlin and Munich form part of the National Bernstein Network for Computational Neuroscience (NNCN). The NNCN was founded by the BMBF with the goal to develop, network, and bundle the knowledge and expertise in the new field of computational neuroscience. The network is named in honor of the German physiologist

Trajectory (black curved line) of a rat moving in a circular environment, together with the locations where a grid cell discharged (red dots). These locations form a hexagonal grid.
© Eric Reifenstein/HU Berlin

Julius Bernstein (1835-1917).

Original Publication:
Reifenstein E T, Kempter R, Schreiber S, Stemmler M B, Herz A V M (2012): Grid Cells in Rat Entorhinal Cortex Encode Physical Space with Independent Firing Fields and Phase Precession at the Single-Trial Level. PNAS, doi: 10.1073/pnas.1109599109

For further information, please contact:
Prof. Dr. Andreas V. M. Herz
Department Biologie II
Ludwig-Maximilians-Universität München
und Bernstein Zentrum für Computational Neuroscience München
Grosshadernerstr. 2
82152 Planegg-Martinsried
Tel: 0049-89-2180-74801
email: herz@bio.lmu.de

Johannes Faber | idw
Further information:
http://www.bccn-muenchen.de/
http://www.bccn-berlin.de/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>