Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is not only ticking

15.07.2014

Max Planck researchers discover that a Doppler effect influences segmentation

Many animals exhibit segmental patterns that manifest themselves during development. One classical example is the sequential and rhythmic formation the segmental precursors of the backbone, a process that has been linked to the ticking of an oscillator in the embryo – the “segmentation clock”.


Waves of oscillating gene expression are visible in pseudo-colour sweeping from the posterior to the anterior through the unsegmented tissue. The anterior end of this unsegmented tissue moves steadily into these on-coming waves, creating a Doppler effect that contributes to the rhythm of segmentation.

© Max Planck Institute of Molecular Cell Biology and Genetics

Until now, this patterning process was thought to be determined simply by the time scale of genetic oscillations that periodically trigger new segment formation. However, Max Planck researchers suggest a more nuanced control over the timing of segmentation.

Their findings show that the rhythm of segmentation is influenced by a Doppler effect that arises from gene expression waves occurring in a shortening embryonic tissue. They paint a potentially revolutionary picture of the process of developmental segmentation, one controlled by not only the time scale of genetic oscillations, but also by changes in oscillation profile and tissue shortening.

What do you, I and many other animals have in common? Perhaps it isn’t the first thing you think of, but we, like them, have a distinctly segmented body axis. During our development, spatial and temporal cues are integrated to form a specific number of embryonic segments that later on give rise to corresponding ribs and vertebrae. The rhythm of this patterning process is crucial to determine the correct number and size of segments, but how is its timing actually controlled?

In vertebrates, the onset and arrest gene expression waves is thought to be controlled by a complex genetic network – the so-called “segmentation clock”. Each arrested waves triggers the formation of a new segment. The underling mechanism was thought to operate like a conventional clock that ticks with a precise period: one tick of the clock equals one new segment.

To examine this hypothesis a team of biologists and physicists guided by Andy Oates and Frank Jülicher from the Max Planck Institute of Molecular Cell Biology and Genetics together with colleagues from the Max Planck Institute for the Physics of Complex Systems in Dresden developed a novel transgenic zebrafish line (named Looping) and a multidimensional time-lapse microscope that enabled them to visualise and quantify gene expression waves and segment formation at the same time.

To their surprise they found that the onset and arrest of waves happened with a different frequency, indicating that the timing of segmentation cannot be explained by a conventional clock alone. The team worked out that this puzzling difference in frequency was caused by a scenario that is similar to the classic Doppler effect.

Travelling tissue and oscillating genes

Imagine an ambulance driving down the street. Did you ever notice how the pitch of the siren changes as it drives past? This is the Doppler effect, and is caused by changes in the frequency of the sound waves as the source comes towards an observer (you) and then drives away. The same thing would happen if you rapidly approached and then passed a stationary sound source.

It turns out that sound waves are not entirely unlike the gene expression waves in zebrafish. These gene expression waves travel from the posterior towards the anterior of the animal (from the tip of the tail towards the head). As they do, the embryo develops, changing its shape, and the tissue in which the waves travel shortens. This leads to a relative motion of the anterior end of the tissue where the new segments form (the observer) towards the posterior (the source).

This motion of the observer into travelling gene expression waves leads to a Doppler effect in the developing zebrafish embryo. Moreover, this Doppler effect is modulated by a more subtle effect that is caused by a continuously changing wave profile. This Dynamic Wavelength effect and the Doppler effect have an opposing influence on the timing of segmentation, but the effect of the Doppler is stronger. Since this timing, as mentioned above, determines the number and size of the body segments, it affects the number and size of the developing ribs and vertebrae.

The team’s findings could potentially revolutionise our understanding of timing during development. The biological mechanism behind the change in the wave profile is still unclear, but it highlights the complex nature of development and the need to go beyond steady state and scaling descriptions of embryonic development.

Contact 

Florian Frisch

Public Information Officer

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden

Phone: +49351 210 2840

 

Original publication

 
Daniele Soroldoni, David J. Jörg, Luis G. Morelli, David L. Richmond, Johannes Schindelin, Frank Jülicher, Andrew C. Oates
A Doppler effect in embryonic pattern formation.
Science, 11 July 2014

Florian Frisch | Max-Planck-Institute
Further information:
http://www.mpg.de/8300471/Doppler-effect-segmentation-clock

Further reports about: Biology Doppler Genetics Molecular clock effect segmentation waves zebrafish

More articles from Life Sciences:

nachricht Stress triggers key molecule to halt transcription of cell's genetic code
28.05.2015 | Stowers Institute for Medical Research

nachricht Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery
28.05.2015 | University of Waterloo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>