Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is not only ticking

15.07.2014

Max Planck researchers discover that a Doppler effect influences segmentation

Many animals exhibit segmental patterns that manifest themselves during development. One classical example is the sequential and rhythmic formation the segmental precursors of the backbone, a process that has been linked to the ticking of an oscillator in the embryo – the “segmentation clock”.


Waves of oscillating gene expression are visible in pseudo-colour sweeping from the posterior to the anterior through the unsegmented tissue. The anterior end of this unsegmented tissue moves steadily into these on-coming waves, creating a Doppler effect that contributes to the rhythm of segmentation.

© Max Planck Institute of Molecular Cell Biology and Genetics

Until now, this patterning process was thought to be determined simply by the time scale of genetic oscillations that periodically trigger new segment formation. However, Max Planck researchers suggest a more nuanced control over the timing of segmentation.

Their findings show that the rhythm of segmentation is influenced by a Doppler effect that arises from gene expression waves occurring in a shortening embryonic tissue. They paint a potentially revolutionary picture of the process of developmental segmentation, one controlled by not only the time scale of genetic oscillations, but also by changes in oscillation profile and tissue shortening.

What do you, I and many other animals have in common? Perhaps it isn’t the first thing you think of, but we, like them, have a distinctly segmented body axis. During our development, spatial and temporal cues are integrated to form a specific number of embryonic segments that later on give rise to corresponding ribs and vertebrae. The rhythm of this patterning process is crucial to determine the correct number and size of segments, but how is its timing actually controlled?

In vertebrates, the onset and arrest gene expression waves is thought to be controlled by a complex genetic network – the so-called “segmentation clock”. Each arrested waves triggers the formation of a new segment. The underling mechanism was thought to operate like a conventional clock that ticks with a precise period: one tick of the clock equals one new segment.

To examine this hypothesis a team of biologists and physicists guided by Andy Oates and Frank Jülicher from the Max Planck Institute of Molecular Cell Biology and Genetics together with colleagues from the Max Planck Institute for the Physics of Complex Systems in Dresden developed a novel transgenic zebrafish line (named Looping) and a multidimensional time-lapse microscope that enabled them to visualise and quantify gene expression waves and segment formation at the same time.

To their surprise they found that the onset and arrest of waves happened with a different frequency, indicating that the timing of segmentation cannot be explained by a conventional clock alone. The team worked out that this puzzling difference in frequency was caused by a scenario that is similar to the classic Doppler effect.

Travelling tissue and oscillating genes

Imagine an ambulance driving down the street. Did you ever notice how the pitch of the siren changes as it drives past? This is the Doppler effect, and is caused by changes in the frequency of the sound waves as the source comes towards an observer (you) and then drives away. The same thing would happen if you rapidly approached and then passed a stationary sound source.

It turns out that sound waves are not entirely unlike the gene expression waves in zebrafish. These gene expression waves travel from the posterior towards the anterior of the animal (from the tip of the tail towards the head). As they do, the embryo develops, changing its shape, and the tissue in which the waves travel shortens. This leads to a relative motion of the anterior end of the tissue where the new segments form (the observer) towards the posterior (the source).

This motion of the observer into travelling gene expression waves leads to a Doppler effect in the developing zebrafish embryo. Moreover, this Doppler effect is modulated by a more subtle effect that is caused by a continuously changing wave profile. This Dynamic Wavelength effect and the Doppler effect have an opposing influence on the timing of segmentation, but the effect of the Doppler is stronger. Since this timing, as mentioned above, determines the number and size of the body segments, it affects the number and size of the developing ribs and vertebrae.

The team’s findings could potentially revolutionise our understanding of timing during development. The biological mechanism behind the change in the wave profile is still unclear, but it highlights the complex nature of development and the need to go beyond steady state and scaling descriptions of embryonic development.

Contact 

Florian Frisch

Public Information Officer

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden

Phone: +49351 210 2840

 

Original publication

 
Daniele Soroldoni, David J. Jörg, Luis G. Morelli, David L. Richmond, Johannes Schindelin, Frank Jülicher, Andrew C. Oates
A Doppler effect in embryonic pattern formation.
Science, 11 July 2014

Florian Frisch | Max-Planck-Institute
Further information:
http://www.mpg.de/8300471/Doppler-effect-segmentation-clock

Further reports about: Biology Doppler Genetics Molecular clock effect segmentation waves zebrafish

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>