Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


For the first time, researchers isolate adult stem cells from human intestinal tissue

For the first time, researchers at the University of North Carolina at Chapel Hill have isolated adult stem cells from human intestinal tissue.

The accomplishment provides a much-needed resource for scientists eager to uncover the true mechanisms of human stem cell biology. It also enables them to explore new tactics to treat inflammatory bowel disease or to ameliorate the side effects of chemotherapy and radiation, which often damage the gut.

"Not having these cells to study has been a significant roadblock to research," said senior study author Scott T. Magness, PhD, assistant professor in the departments of medicine, biomedical engineering, and cell and molecular physiology at UNC. "Until now, we have not had the technology to isolate and study these stem cells – now we have to tools to start solving many of these problems"

The UNC study, published online April 4, 2013, in the journal Stem Cells, represents a leap forward for a field that for many years has had to resort to conducting experiments in cells from mice. While significant progress has been made using mouse models, differences in stem cell biology between mice and humans have kept researchers from investigating new therapeutics for human afflictions.

"While the information we get from mice is good foundational mechanistic data to explain how this tissue works, there are some opportunities that we might not be able to pursue until we do similar experiments with human tissue," lead study co-author Adam D. Gracz, a graduate student in Magness' lab. Megan K. Fuller, MD, was also co-lead author of the study.

The Magness lab was the first in the United States to isolate and grow single intestinal stem cells from mice, so they had a leg up when it came to pursuing similar techniques in human tissue. Plus the researchers were able to get sections of human small intestine for their experiments that otherwise would have been discarded after gastric bypass surgery at UNC.

To develop their technique, the researchers investigated whether the approach they had taken in mice would work in human tissue. They first looked to see if the same molecules they had found stuck on the surface of mouse stem cells were also present on human stem cells. The researchers established that these specific molecules – called CD24 and CD44 -- were indeed the same between the two species. They then attached fluorescent tags to these molecules and used a special machine called a fluorescence activated cell sorter to identify and isolate the stem cells from the small intestine samples.

They found that not only could they isolate the human stem cells from human intestinal tissue, but that they also could separate different types of intestinal stem cells from each other. These two types of stem cells – active and reserve – are a hot topic for stem cell researchers who are still trying to figure out how reserve stem cells cycle in to replenish active stem cells damaged by injury, chemotherapy or radiation.

"Now that we have been able to do this, the next step is to carefully characterize these populations to assess their potential," said Magness. "Can we expand these cells outside of the body to potentially provide a cell source for therapy? Can we use these for tissue engineering? Or to take it to the extreme, can we genetically modify these cells to cure inborn genetic disorders or inflammatory bowel disease? Those are some questions that we are going to explore in the future."

The research was funded by the North Carolina Translational and Clinical Sciences Institute (NC TraCS), home of the Clinical and Translational Science Awards (CTSA) at UNC.

Les Lang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>