Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Over Time, An Invasive Plant Loses Its Toxic Edge

02.09.2009
Like most invasive plants introduced to the U.S. from Europe and other places, garlic mustard first found it easy to dominate the natives. A new study indicates that eventually, however, its primary weapon – a fungus-killing toxin injected into the soil – becomes less potent.

The study, in Proceedings of the National Academy of Sciences, is one of the first to show that evolutionary forces can alter the very attributes that give an invasive plant its advantage. In fact, the study suggests the plant’s defenses are undermined by its own success.

Garlic mustard comes from a family of smelly, sharp-tasting plants that includes cabbage, radish, horseradish and wasabi. Unlike most plants, which rely on soil fungi to supplement them with phosphorous, nitrogen and water, garlic mustard gets by without the extra help, said Richard Lankau, a postdoctoral researcher at the Illinois Natural History Survey (INHS) at the University of Illinois. Lankau led the study with INHS plant ecologist Greg Spyreas.

“For whatever reason, these plants just don’t hook up with the soil fungus,” Lankau said. Instead, garlic mustard produces glucosinolates, pungent compounds that leach into the soil and kill off many soil fungi, especially those native to North America. This weakens the native plants. As a result, garlic mustard now grows in dense patches in many North American woodlands, its preferred habitat. Those patches are often devoid of native plants.

Lankau began the new study with a seemingly obvious question: Once garlic mustard has vanquished most of its competitors, why would it invest as much in maintaining its toxic arsenal? He predicted – correctly, it turns out – that levels of glucosinolates in the plant would diminish over time.

“When you’re in a situation where the only thing you’re competing with is other garlic mustard, it may be that making lots of this chemical is not a very good idea,” he said.

Thanks to a study of historic herbarium records conducted by co-author Victoria Nuzzo, of Natural Area Consultants, N.Y., the researchers had access to a 140-year record of the age of garlic mustard populations across the eastern half of the U.S. The team collected garlic mustard seeds from 44 locations, grew them in a greenhouse and tested glucosinolate levels in each. Those tests found that older populations – those that have been present in an area for more than 30 years – produced lower levels of the fungicidal compounds than those that got their start less than two decades ago, Lankau said.

Genetic studies suggested that these patterns were the result of natural selection. That is, the plants that produced less of the toxin were more likely to survive and reproduce in older populations.

The researchers then grew the garlic mustard in soil from native woodlands. After a time, they removed these plants and potted native trees in the same soil. The trees did best in pots that had held plants from older populations of garlic mustard, indicating, again, that the plants’ toxin output had diminished over time, killing less of the fungus on which the native plants relied.

To determine if the decline in glucosinolate production was allowing native plants to return to areas previously dominated by garlic mustard in the wild, the researchers turned to a unique data set available in Illinois. The Critical Trends Assessment Program (CTAP) is a long-term initiative funded by the state Department of Natural Resources and administered by the INHS that monitors the status of plants, birds and insects across the state every five years. The CTAP began in 1997, and so data from the first two sampling periods were used (1997-2001 and 2002-2007)

Because CTAP includes data on plant abundance, including garlic mustard and native plants from across the state, the researchers were able to determine if native plants were declining or advancing in the presence of garlic mustard. Again, they found that older populations of garlic mustard – though still problematic – posed less of a threat to native plants than the newer ones did.

While this study focused on only one plant, the results indicate that some invasive plants evolve in ways that may make them more manageable over time, Spyreas said. This suggests that conservation efforts might be more effective if they focus on the most recently invaded areas, which – in the case of garlic mustard, at least – is probably where the most damage occurs.

This study was funded by the Agriculture and Food Research Initiative at the U.S. Department of Agriculture and by the Illinois Department of Natural Resources. The research team also included Adam Davis, of the Agricultural Research Service at the USDA.

Diana Yates | University of Illinois
Further information:
http://news.illinois.edu/news/09/0901garlicmustard.html
http://www.illinois.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>