Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tick-borne encephalitis virus reveals its access code

Fritz et al. have identified an amino acid switch that flaviviruses flip to gain access to cells.

Flaviviruses such as tick-borne encephalitis virus (TBEV), yellow fever, and dengue are dangerous human pathogens. These membrane-encircled viruses enter cells by being gobbled up into endosomes and fusing their membrane with that of the endosome.

Fusion is triggered by the endosome's acidic environment. Low pH prompts the aptly named fusion protein, on the virus's outer membrane, to change shape and grab hold of the endosome membrane, bringing the two membranes together. In their search for possible pH sensors, researchers have focused on five highly conserved histidine residues in the flavivirus fusion protein. The chemical properties of histidines make them prime candidates—they switch from uncharged to having a double positive charge upon acidification of their environment, such as that in endosomes.

Fritz et al. replaced each of the five histidines of the TBEV fusion protein with alternative residues and observed the virus's fusion ability. Given the conservation of the five histidines, the team was surprised, that mutation of one of the histidines, His323, was sufficient to completely abolish fusion. Individual mutation of three of the others had no effect on fusion whatsoever, and mutation of the fourth led to an untestable ill-formed fusion protein.

The team went on to show that mutation of the crucial His323 interfered with the pH-induced shape change of the fusion protein.

Fritz, R., et al. 2008. J. Cell Biol. doi:10.1083/jcb.200806081

Sati Motieram | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>