Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tick-borne encephalitis virus reveals its access code

21.10.2008
Fritz et al. have identified an amino acid switch that flaviviruses flip to gain access to cells.

Flaviviruses such as tick-borne encephalitis virus (TBEV), yellow fever, and dengue are dangerous human pathogens. These membrane-encircled viruses enter cells by being gobbled up into endosomes and fusing their membrane with that of the endosome.

Fusion is triggered by the endosome's acidic environment. Low pH prompts the aptly named fusion protein, on the virus's outer membrane, to change shape and grab hold of the endosome membrane, bringing the two membranes together. In their search for possible pH sensors, researchers have focused on five highly conserved histidine residues in the flavivirus fusion protein. The chemical properties of histidines make them prime candidates—they switch from uncharged to having a double positive charge upon acidification of their environment, such as that in endosomes.

Fritz et al. replaced each of the five histidines of the TBEV fusion protein with alternative residues and observed the virus's fusion ability. Given the conservation of the five histidines, the team was surprised, that mutation of one of the histidines, His323, was sufficient to completely abolish fusion. Individual mutation of three of the others had no effect on fusion whatsoever, and mutation of the fourth led to an untestable ill-formed fusion protein.

The team went on to show that mutation of the crucial His323 interfered with the pH-induced shape change of the fusion protein.

Fritz, R., et al. 2008. J. Cell Biol. doi:10.1083/jcb.200806081

Sati Motieram | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>