Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why the thumb of the right hand is on the left hand side

26.05.2009
A researcher of the University of Innsbruck elucidates an important developmental mechanism

It is the concentration of a few signaling molecules that determines the fate of individual cells during the early development of organisms. In the renowned journal Current Biology, a team of molecular biologists led by Pia Aanstad of the University of Innsbruck reports that a variety of molecular mechanisms accounts for the interpretation of the concentration of the signaling molecule Hedgehog.

The development of an organism is a complex process to which a dozen or hundreds of signaling molecules contribute. Some of these molecules have dozens of functions in the fruit fly and in humans alike. One of these molecules – Hedgehog – controls the development of, for example, the extremities, the central nervous system, the teeth, eyes, hair, lung and the gastrointestinal tract. "What is most remarkable: The cells are told what to do not only because the molecule is present but also by the different concentrations of the molecules in the tissue", says group leader Pia Aanstad of the Institute for Molecular Biology of the University of Innsbruck. "The concentration of Hedgehog makes the thumb of the right hand grow on the left hand side and the thumb of the left hand grow on the right hand side." Thus, scientists define Hedgehog as a morphogen – a signal that is concentration-dependent and controls the pattern formation of an organism. A mutation in this signaling pathway induces dramatic and embryonically lethal malformations in the early developmental stage such as the formation of just one central eye.

Defects in the Hedgehog signaling pathway in humans are a cause for one of the most common birth defects – holoprosencephaly. "Hedgehog genes are not new in evolution and the signaling pathway functions in the fly, mouse, fish and in humans similarly", says Pia Aanstad. In her research work she focuses on the zebra danio or zebra fish. Due to the short developmental cycle, the scientists are able to observe the development of the small tropic fish in fast motion. "We want to better understand how the cells process the signals of the signaling molecules and how they react."

Mutants do not react to high concentrations

Already during her time as a post doc in San Francisco, U.S., Pia Aanstad discovered a mutated zebra fish whose Hedgehog signaling pathway was disrupted. The fish showed a genetic alteration at the so-called Smoothened (Smo) protein, which is located at the cell membrane and transfers the Hedgehog signal into the cell. In 2005, Aanstad and her colleagues published a paper in the renowned journal Nature, in which they showed that Smo is concentrated at cilia (cellular projections) and also functions at the cilium. "By using high-resolution fluorescence microscopy, we have now shown that in the new mutants a small genetic alteration at the extracellular part of this protein inhibits localization in the cilia and that while the cells identify the Hedgehog signals, they interpret the concentration incorrectly", explains Pia Aanstad. "This is evidence for the notion that cells use various molecular mechanisms for interpreting different Hedgehog concentrations." This fact may also be of importance for the diagnosis and treatment of certain cancers (basal cell carcinoma), where the constant up-regulation of the Hedgehog signal is responsible for uncontrolled cell growth. Aanstad published the findings together with her colleagues from the University of California, San Francisco in the journal Current Biology.

Successful scientist

Pia Aanstad started her research work at the Institute for Molecular Biology of the University of Innsbruck, headed by Prof. Dirk Meyer, last year. The Norwegian studied in England and continued her education at the Max-Planck Institute for Molecular Genetics in Berlin and at the Department of Biochemistry of the University of California. Together with her own research group in Innsbruck, she continues her research work on the Hedgehog signaling pathway. Because the question of which other mechanisms the cells use to interpret the concentration of signaling proteins has not been answered so far.

Pia Aanstad | EurekAlert!
Further information:
http://www.uibk.ac.at

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>