Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thirsty plants send emergency calls

10.12.2009
Independent whether we consider grapevines in the vineyard or tomatoes in the greenhouse: how well plants are being supplied with water can be viewed by an innovative magnetic probe that is simply clamped to the leaves. This novel technology promises water savings and reduced soil salination.

The probe has been developed by a team headed by Professor Ulrich Zimmermann from the Biocenter at the University of Würzburg in close mutual discussions with Dr. Dirk Zimmermann and Professor Ernst Bamberg from the Max Planck Institute of Biophysics (Frankfurt/Main). Now, after two and a half years of work, the technology is close to reaching the application stage.

Tests are still ongoing on the prototype of the probe, but interested farmers and horticulturalists are already gathering in numbers outside Zimmermann's door: "Interest in our technology is huge in Israel, Spain, Australia and other regions where farming is not possible without irrigation," says the professor.

The probe may even be an exciting prospect for the wine-growing industry in Germany given that climate change and ever-drier summers mean that here too grapevine growers are already irrigating their vineyards to ensure high yield and high quality products.

How the magnetic probe works

The probe consists of two small cylindrical magnets being roughly as thick as a pencil. They are clamped on a leaf of a plant from above and below; the magnetic force can be adjusted with a setscrew. This ensures that even the more delicate leaves can withstand the pressure exerted by the magnets.

One of the magnets contains a pressure-sensitive chip. If the leaf has been well supplied with water and is therefore plump and firm, the chip registers little pressure. As soon as the leaf looses water, the pressure rises. The pressure signals are monitored by a cable-connected transmitter having roughly the size of a cellular phone, which can be attached, for example, to the branches of the plant. This sends the pressure signals to a control unit, which stores the data and feeds it into the Internet. The telemetric data transfer to the Internet has been developed by NTBB Systemtechnik GmbH in Zeuthen near Berlin.

Ulrich Zimmermann can then see on the monitor in his office, in real time, what the situation is regarding the water supply of the little olive tree attached to the probe on the next floor down in the laboratory. But he also sees simultaneously the water status of plants growing in three plantations in Israel (oranges, olives and bananas), where the system is also currently undergoing tests.

Quick response to water shortage possible

Thirsty plants therefore send their emergency calls directly to the people concerned - to their laptop or cellular phone. In the case of water shortage growers and gardeners can then immediately turn on irrigation and see online when the plants have received sufficient water. The distress signals from the field can also be used for the automated remote irrigation control of plants.

Advantages of the magnetic probe

According to Zimmermann, the magnetic probe allows a continuous, precise, and highly sensitive measurement of the water supply to plant leaves, even out in the open field, for the first time ever. To date, irrigation technology has mostly used soil sensors, if anything, which determine the moisture content of the soil. "However, this does usually not reflect the conditions in the plant," explains Zimmermann.

The professor lists a few other advantages, such as the fact that any layperson can clamp the probe without causing damage to the leaves. The probe is designed to be used for one vegetation period, with only three to four probes needed per hectare out in the field or inside the greenhouse. The objective is a measuring system that does not entail excessively high operating costs for users. "With systematic use, the investment should pay for itself within two years," says Zimmermann.

Reduction in water consumption and soil salination

Agricultural businesses that use the magnetic probe for irrigation monitoring will find that water consumption can easily be reduced by around 30 percent, predicts the Würzburg professor.

For cultivation out in the open field in hot and dry countries, Zimmermann also expects a further positive consequence: needs-oriented irrigation, as is feasible with the probe, ought to counteract salination of the soil there. This damaging effect occurs when soil constantly loses large quantities of water through evaporation - the salts dissolved in the water are precipitated on the surface. "However, if plants are only given as much water as they can absorb, this evaporation of water from soil is minimized," explains Zimmermann.

Ministry supports foundation of a company

Zimmermann sees huge market potential in the probe. So, he and his colleagues have decided to found a company that will offer needs-oriented irrigation monitoring devices as a service to farmers and horticulturalists.

The German Federal Ministry of Economics has granted the Würzburg founders EUR 100,000 in funding for this purpose from the development program EXIST. With this cash injection the team can now devise a business plan and press ahead with founding the company. The ministry has also provided support, through the PRO-INNO program, for the development of the prototype of the magnetic probe.

Members of the founding team

Alongside Professor Zimmermann, the founding team includes: doctoral student in biology Simon Rüger, biotechnologist Dr. Aihua Zhou, and business consultant Michael Gallena. The project is being supported by the Research and Innovation Service Center (SFI) of the University of Würzburg.

ZIM Plant Technology is the name given to the project. ZIM is an acronym for "Zimmermann Irrigation Monitoring".

Contact

Prof. Dr. Ulrich Zimmermann, Department of Biotechnology at the University of Würzburg, T +49 (0)172 7809301, ulrich.zimmermann@zim-plant-technology.com

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>