Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thirsty plants send emergency calls

10.12.2009
Independent whether we consider grapevines in the vineyard or tomatoes in the greenhouse: how well plants are being supplied with water can be viewed by an innovative magnetic probe that is simply clamped to the leaves. This novel technology promises water savings and reduced soil salination.

The probe has been developed by a team headed by Professor Ulrich Zimmermann from the Biocenter at the University of Würzburg in close mutual discussions with Dr. Dirk Zimmermann and Professor Ernst Bamberg from the Max Planck Institute of Biophysics (Frankfurt/Main). Now, after two and a half years of work, the technology is close to reaching the application stage.

Tests are still ongoing on the prototype of the probe, but interested farmers and horticulturalists are already gathering in numbers outside Zimmermann's door: "Interest in our technology is huge in Israel, Spain, Australia and other regions where farming is not possible without irrigation," says the professor.

The probe may even be an exciting prospect for the wine-growing industry in Germany given that climate change and ever-drier summers mean that here too grapevine growers are already irrigating their vineyards to ensure high yield and high quality products.

How the magnetic probe works

The probe consists of two small cylindrical magnets being roughly as thick as a pencil. They are clamped on a leaf of a plant from above and below; the magnetic force can be adjusted with a setscrew. This ensures that even the more delicate leaves can withstand the pressure exerted by the magnets.

One of the magnets contains a pressure-sensitive chip. If the leaf has been well supplied with water and is therefore plump and firm, the chip registers little pressure. As soon as the leaf looses water, the pressure rises. The pressure signals are monitored by a cable-connected transmitter having roughly the size of a cellular phone, which can be attached, for example, to the branches of the plant. This sends the pressure signals to a control unit, which stores the data and feeds it into the Internet. The telemetric data transfer to the Internet has been developed by NTBB Systemtechnik GmbH in Zeuthen near Berlin.

Ulrich Zimmermann can then see on the monitor in his office, in real time, what the situation is regarding the water supply of the little olive tree attached to the probe on the next floor down in the laboratory. But he also sees simultaneously the water status of plants growing in three plantations in Israel (oranges, olives and bananas), where the system is also currently undergoing tests.

Quick response to water shortage possible

Thirsty plants therefore send their emergency calls directly to the people concerned - to their laptop or cellular phone. In the case of water shortage growers and gardeners can then immediately turn on irrigation and see online when the plants have received sufficient water. The distress signals from the field can also be used for the automated remote irrigation control of plants.

Advantages of the magnetic probe

According to Zimmermann, the magnetic probe allows a continuous, precise, and highly sensitive measurement of the water supply to plant leaves, even out in the open field, for the first time ever. To date, irrigation technology has mostly used soil sensors, if anything, which determine the moisture content of the soil. "However, this does usually not reflect the conditions in the plant," explains Zimmermann.

The professor lists a few other advantages, such as the fact that any layperson can clamp the probe without causing damage to the leaves. The probe is designed to be used for one vegetation period, with only three to four probes needed per hectare out in the field or inside the greenhouse. The objective is a measuring system that does not entail excessively high operating costs for users. "With systematic use, the investment should pay for itself within two years," says Zimmermann.

Reduction in water consumption and soil salination

Agricultural businesses that use the magnetic probe for irrigation monitoring will find that water consumption can easily be reduced by around 30 percent, predicts the Würzburg professor.

For cultivation out in the open field in hot and dry countries, Zimmermann also expects a further positive consequence: needs-oriented irrigation, as is feasible with the probe, ought to counteract salination of the soil there. This damaging effect occurs when soil constantly loses large quantities of water through evaporation - the salts dissolved in the water are precipitated on the surface. "However, if plants are only given as much water as they can absorb, this evaporation of water from soil is minimized," explains Zimmermann.

Ministry supports foundation of a company

Zimmermann sees huge market potential in the probe. So, he and his colleagues have decided to found a company that will offer needs-oriented irrigation monitoring devices as a service to farmers and horticulturalists.

The German Federal Ministry of Economics has granted the Würzburg founders EUR 100,000 in funding for this purpose from the development program EXIST. With this cash injection the team can now devise a business plan and press ahead with founding the company. The ministry has also provided support, through the PRO-INNO program, for the development of the prototype of the magnetic probe.

Members of the founding team

Alongside Professor Zimmermann, the founding team includes: doctoral student in biology Simon Rüger, biotechnologist Dr. Aihua Zhou, and business consultant Michael Gallena. The project is being supported by the Research and Innovation Service Center (SFI) of the University of Würzburg.

ZIM Plant Technology is the name given to the project. ZIM is an acronym for "Zimmermann Irrigation Monitoring".

Contact

Prof. Dr. Ulrich Zimmermann, Department of Biotechnology at the University of Würzburg, T +49 (0)172 7809301, ulrich.zimmermann@zim-plant-technology.com

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>