Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thirsty plants send emergency calls

10.12.2009
Independent whether we consider grapevines in the vineyard or tomatoes in the greenhouse: how well plants are being supplied with water can be viewed by an innovative magnetic probe that is simply clamped to the leaves. This novel technology promises water savings and reduced soil salination.

The probe has been developed by a team headed by Professor Ulrich Zimmermann from the Biocenter at the University of Würzburg in close mutual discussions with Dr. Dirk Zimmermann and Professor Ernst Bamberg from the Max Planck Institute of Biophysics (Frankfurt/Main). Now, after two and a half years of work, the technology is close to reaching the application stage.

Tests are still ongoing on the prototype of the probe, but interested farmers and horticulturalists are already gathering in numbers outside Zimmermann's door: "Interest in our technology is huge in Israel, Spain, Australia and other regions where farming is not possible without irrigation," says the professor.

The probe may even be an exciting prospect for the wine-growing industry in Germany given that climate change and ever-drier summers mean that here too grapevine growers are already irrigating their vineyards to ensure high yield and high quality products.

How the magnetic probe works

The probe consists of two small cylindrical magnets being roughly as thick as a pencil. They are clamped on a leaf of a plant from above and below; the magnetic force can be adjusted with a setscrew. This ensures that even the more delicate leaves can withstand the pressure exerted by the magnets.

One of the magnets contains a pressure-sensitive chip. If the leaf has been well supplied with water and is therefore plump and firm, the chip registers little pressure. As soon as the leaf looses water, the pressure rises. The pressure signals are monitored by a cable-connected transmitter having roughly the size of a cellular phone, which can be attached, for example, to the branches of the plant. This sends the pressure signals to a control unit, which stores the data and feeds it into the Internet. The telemetric data transfer to the Internet has been developed by NTBB Systemtechnik GmbH in Zeuthen near Berlin.

Ulrich Zimmermann can then see on the monitor in his office, in real time, what the situation is regarding the water supply of the little olive tree attached to the probe on the next floor down in the laboratory. But he also sees simultaneously the water status of plants growing in three plantations in Israel (oranges, olives and bananas), where the system is also currently undergoing tests.

Quick response to water shortage possible

Thirsty plants therefore send their emergency calls directly to the people concerned - to their laptop or cellular phone. In the case of water shortage growers and gardeners can then immediately turn on irrigation and see online when the plants have received sufficient water. The distress signals from the field can also be used for the automated remote irrigation control of plants.

Advantages of the magnetic probe

According to Zimmermann, the magnetic probe allows a continuous, precise, and highly sensitive measurement of the water supply to plant leaves, even out in the open field, for the first time ever. To date, irrigation technology has mostly used soil sensors, if anything, which determine the moisture content of the soil. "However, this does usually not reflect the conditions in the plant," explains Zimmermann.

The professor lists a few other advantages, such as the fact that any layperson can clamp the probe without causing damage to the leaves. The probe is designed to be used for one vegetation period, with only three to four probes needed per hectare out in the field or inside the greenhouse. The objective is a measuring system that does not entail excessively high operating costs for users. "With systematic use, the investment should pay for itself within two years," says Zimmermann.

Reduction in water consumption and soil salination

Agricultural businesses that use the magnetic probe for irrigation monitoring will find that water consumption can easily be reduced by around 30 percent, predicts the Würzburg professor.

For cultivation out in the open field in hot and dry countries, Zimmermann also expects a further positive consequence: needs-oriented irrigation, as is feasible with the probe, ought to counteract salination of the soil there. This damaging effect occurs when soil constantly loses large quantities of water through evaporation - the salts dissolved in the water are precipitated on the surface. "However, if plants are only given as much water as they can absorb, this evaporation of water from soil is minimized," explains Zimmermann.

Ministry supports foundation of a company

Zimmermann sees huge market potential in the probe. So, he and his colleagues have decided to found a company that will offer needs-oriented irrigation monitoring devices as a service to farmers and horticulturalists.

The German Federal Ministry of Economics has granted the Würzburg founders EUR 100,000 in funding for this purpose from the development program EXIST. With this cash injection the team can now devise a business plan and press ahead with founding the company. The ministry has also provided support, through the PRO-INNO program, for the development of the prototype of the magnetic probe.

Members of the founding team

Alongside Professor Zimmermann, the founding team includes: doctoral student in biology Simon Rüger, biotechnologist Dr. Aihua Zhou, and business consultant Michael Gallena. The project is being supported by the Research and Innovation Service Center (SFI) of the University of Würzburg.

ZIM Plant Technology is the name given to the project. ZIM is an acronym for "Zimmermann Irrigation Monitoring".

Contact

Prof. Dr. Ulrich Zimmermann, Department of Biotechnology at the University of Würzburg, T +49 (0)172 7809301, ulrich.zimmermann@zim-plant-technology.com

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>