Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Therapeutic Nanoparticles Give New Meaning to Sugar-Coating Medicine

A research team at the National Institute of Standards and Technology (NIST) studying sugar-coated nanoparticles for use as a possible cancer therapy has uncovered a delicate balancing act that makes the particles more effective than conventional thinking says they should be. Just like individuals in a crowd respecting other people’s personal space, the particles work because they get close together, but not too close.

In cooperation with colleagues at The Johns Hopkins University, Dartmouth College, the University of Manitoba and two biopharmaceutical companies, the NIST team has demonstrated* that the particles—essentially sugar-coated bits of iron oxide, about 100 nanometers wide—are potent cancer killers because they interact with one another in ways that smaller nanoparticles do not.

The interactions, thought by many bioengineers to be undesirable, actually help the larger particles heat up better when subjected to an alternating magnetic field. Because this heat destroys cancer cells, the team’s findings may help engineers design better particles and treatment methods.

Nanoparticles hold the promise of battling cancer without the damaging side effects of chemotherapy or radiation treatment. Minuscule balls of iron oxide can be coated with sugar molecules making them particularly attractive to resource-hungry cancer cells. Once the particles are injected, cancer cells would then ingest them, and doctors would then be able to apply an alternating magnetic field that causes the iron oxide centers to heat, killing the cancer but leaving surrounding tissue unharmed.

Two biotech companies, Micromod Partikeltechnologie and Aduro BioTech, created particles that showed great potential in treating cancers in mice, and they asked NIST to help understand why it worked so well. “But they sent us particles that were much larger than what the conventional wisdom says they should be,” says NIST materials scientist Cindi Dennis. “Larger particles are more strongly magnetic and tend to clump together, which makes them large enough to attract the body’s defense systems before they can reach a tumor. The companies’ nanoparticles, however, did not have this problem.”

Neutron scattering probes at the NIST Center for Neutron Research revealed that the particles’ larger iron oxide cores attract one another, but that the sugar coating has fibers extending out, making it resemble a dandelion—and these fibers push against one another when two particles get too close together, making them spring apart and maintain an antibody-defying distance rather than clumping. Moreover, when the particles do get close, the iron oxide centers all rotate together under the influence of a magnetic field, both generating more heat and depositing this heat locally. All these factors helped the nanoparticles destroy breast tumors in three out of four mice after one treatment with no regrowth.

“The push-pull is part of a tug of war that fixes the distance between nanoparticles,” Dennis says. “This suggests we can stabilize interacting particles in ways that potentially pay off in the clinic.”

The research was funded by the U.S. Army Medical Research and Materiel Command and used facilities supported by the National Science Foundation.

* C.L. Dennis, A.J. Jackson, J.A. Borchers, P.J. Hoopes, R. Strawbridge, A.R. Foreman, J. van Lierop, C. Gruttner and R. Ivkov. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology, 20 (2009) 395103. [doi:10.1088/0957-4484/20/39/395103]

Chad Boutin | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>