Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Therapeutic Nanoparticles Give New Meaning to Sugar-Coating Medicine

24.09.2009
A research team at the National Institute of Standards and Technology (NIST) studying sugar-coated nanoparticles for use as a possible cancer therapy has uncovered a delicate balancing act that makes the particles more effective than conventional thinking says they should be. Just like individuals in a crowd respecting other people’s personal space, the particles work because they get close together, but not too close.

In cooperation with colleagues at The Johns Hopkins University, Dartmouth College, the University of Manitoba and two biopharmaceutical companies, the NIST team has demonstrated* that the particles—essentially sugar-coated bits of iron oxide, about 100 nanometers wide—are potent cancer killers because they interact with one another in ways that smaller nanoparticles do not.

The interactions, thought by many bioengineers to be undesirable, actually help the larger particles heat up better when subjected to an alternating magnetic field. Because this heat destroys cancer cells, the team’s findings may help engineers design better particles and treatment methods.

Nanoparticles hold the promise of battling cancer without the damaging side effects of chemotherapy or radiation treatment. Minuscule balls of iron oxide can be coated with sugar molecules making them particularly attractive to resource-hungry cancer cells. Once the particles are injected, cancer cells would then ingest them, and doctors would then be able to apply an alternating magnetic field that causes the iron oxide centers to heat, killing the cancer but leaving surrounding tissue unharmed.

Two biotech companies, Micromod Partikeltechnologie and Aduro BioTech, created particles that showed great potential in treating cancers in mice, and they asked NIST to help understand why it worked so well. “But they sent us particles that were much larger than what the conventional wisdom says they should be,” says NIST materials scientist Cindi Dennis. “Larger particles are more strongly magnetic and tend to clump together, which makes them large enough to attract the body’s defense systems before they can reach a tumor. The companies’ nanoparticles, however, did not have this problem.”

Neutron scattering probes at the NIST Center for Neutron Research revealed that the particles’ larger iron oxide cores attract one another, but that the sugar coating has fibers extending out, making it resemble a dandelion—and these fibers push against one another when two particles get too close together, making them spring apart and maintain an antibody-defying distance rather than clumping. Moreover, when the particles do get close, the iron oxide centers all rotate together under the influence of a magnetic field, both generating more heat and depositing this heat locally. All these factors helped the nanoparticles destroy breast tumors in three out of four mice after one treatment with no regrowth.

“The push-pull is part of a tug of war that fixes the distance between nanoparticles,” Dennis says. “This suggests we can stabilize interacting particles in ways that potentially pay off in the clinic.”

The research was funded by the U.S. Army Medical Research and Materiel Command and used facilities supported by the National Science Foundation.

* C.L. Dennis, A.J. Jackson, J.A. Borchers, P.J. Hoopes, R. Strawbridge, A.R. Foreman, J. van Lierop, C. Gruttner and R. Ivkov. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology, 20 (2009) 395103. [doi:10.1088/0957-4484/20/39/395103]

Chad Boutin | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>