Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory of the “Rotting” Y Chromosome Dealt a Fatal Blow

23.02.2012
If you were to discover that a fundamental component of human biology has survived virtually intact for the past 25 million years, you’d be quite confident in saying that it is here to stay.

Such is the case for a team of Whitehead Institute scientists, whose latest research on the evolution of the human Y chromosome confirms that the Y—despite arguments to the contrary—has a long, healthy future ahead of it.

Proponents of the so-called rotting Y theory have been predicting the eventual extinction of the Y chromosome since it was first discovered that the Y has lost hundreds of genes over the past 300 million years. The rotting Y theorists have assumed this trend is ongoing, concluding that inevitably, the Y will one day be utterly devoid of its genetic content.

Over the past decade, Whitehead Institute Director David Page and his lab have steadily been churning out research that should have permanently debunked the rotting Y theory, but to no avail.

“For the past 10 years, the one dominant storyline in public discourse about the Y is that it is disappearing,” says Page. “Putting aside the question of whether this ever had a sound scientific basis, the story went viral—fast—and has stayed viral. I can’t give a talk without being asked about the disappearing Y. This idea has been so pervasive that it has kept us from moving on to address the really important questions about the Y.”

To Page, this latest research represents checkmate in the chess match he’s been drawn into against the “rotting Y” theorists. Members of his lab have dealt their fatal blow by sequencing the Y chromosome of the rhesus macaque—an Old World monkey whose evolutionary path diverged from that of humans some 25 million years ago—and comparing it with the sequences of the human and chimpanzee Y chromosomes. The comparison, published this week in the online edition of the journal Nature, reveals remarkable genetic stability on the rhesus and human Ys in the years since their evolutionary split.

Grasping the full impact of this finding requires a bit of historical context. Before they became specialized sex chromosomes, the X and Y were once an ordinary, identical pair of autosomes like the other 22 pairs of chromosomes humans carry. To maintain genetic diversity and eliminate potentially harmful mutations, autosome pairs swap genes with each other in a process referred to as “crossing over.” Roughly 300 million years ago, a segment of the X stopped crossing over with the Y, causing rapid genetic decay on the Y. Over the next hundreds of millions of years, four more segments, or strata, of the X ceased crossing over with the Y. The resulting gene loss on the Y was so extensive that today, the human Y retains only 19 of the more than 600 genes it once shared with its ancestral autosomal partner.

“The Y was in free fall early on, and genes were lost at an incredibly rapid rate,” says Page. “But then it leveled off, and it’s been doing just fine since.”

How fine? Well, the sequence of the rhesus Y, which was completed with the help of collaborators at the sequencing centers at Washington University School of Medicine and Baylor College of Medicine, shows the chromosome hasn’t lost a single ancestral gene in the past 25 million years. By comparison, the human Y has lost just one ancestral gene in that period, and that loss occurred in a segment that comprises just 3% of the entire chromosome. The finding allows researchers to describe the Y’s evolution as one marked by periods of swift decay followed by strict conservation.

“We’ve been carefully developing this clearcut way of demystifying the evolution of the Y chromosome,” says Page lab researcher Jennifer Hughes, whose earlier work comparing the human and chimpanzee Ys revealed a stable human Y for at least six million years. “Now our empirical data fly in the face of the other theories out there. With no loss of genes on the rhesus Y and one gene lost on the human Y, it’s clear the Y isn’t going anywhere.”

“This paper simply destroys the idea of the disappearing Y chromosome,” adds Page. “I challenge anyone to argue when confronted with this data.”

This work was supported by the National Institutes of Health, the Howard Hughes Medical Institute, and the Charles A. King Trust.

Written by Matt Fearer

David Page’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citation:

“Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes”

Nature, online February 22, 2012

Jennifer F. Hughes (1), Helen Skaletsky (1), Laura G. Brown (1), Tatyana Pyntikova (1), Tina Graves (2), Robert S. Fulton (2), Shannon Dugan (3), Yan Ding (3), Christian J. Buhay (3), Colin Kremitzki (2), Qiaoyan Wang (3), Hua Shen (3), Michael Holder (3), Donna Villasana (3), Lynne V. Nazareth (3), Andrew Cree (3), Laura Courtney (2), Joelle Veizer (2), Holland Kotkiewicz (2), Ting-Jan Cho (1), Natalia Koutseva (1), Steve Rozen (1), Donna M. Muzny (3), Wesley C. Warren (2), Richard A. Gibbs (3), Richard K. Wilson (2), David C. Page (1).

1. Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

2. The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA.

3. Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.

Matt Fearer | Newswise Science News
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>