Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory of the “Rotting” Y Chromosome Dealt a Fatal Blow

23.02.2012
If you were to discover that a fundamental component of human biology has survived virtually intact for the past 25 million years, you’d be quite confident in saying that it is here to stay.

Such is the case for a team of Whitehead Institute scientists, whose latest research on the evolution of the human Y chromosome confirms that the Y—despite arguments to the contrary—has a long, healthy future ahead of it.

Proponents of the so-called rotting Y theory have been predicting the eventual extinction of the Y chromosome since it was first discovered that the Y has lost hundreds of genes over the past 300 million years. The rotting Y theorists have assumed this trend is ongoing, concluding that inevitably, the Y will one day be utterly devoid of its genetic content.

Over the past decade, Whitehead Institute Director David Page and his lab have steadily been churning out research that should have permanently debunked the rotting Y theory, but to no avail.

“For the past 10 years, the one dominant storyline in public discourse about the Y is that it is disappearing,” says Page. “Putting aside the question of whether this ever had a sound scientific basis, the story went viral—fast—and has stayed viral. I can’t give a talk without being asked about the disappearing Y. This idea has been so pervasive that it has kept us from moving on to address the really important questions about the Y.”

To Page, this latest research represents checkmate in the chess match he’s been drawn into against the “rotting Y” theorists. Members of his lab have dealt their fatal blow by sequencing the Y chromosome of the rhesus macaque—an Old World monkey whose evolutionary path diverged from that of humans some 25 million years ago—and comparing it with the sequences of the human and chimpanzee Y chromosomes. The comparison, published this week in the online edition of the journal Nature, reveals remarkable genetic stability on the rhesus and human Ys in the years since their evolutionary split.

Grasping the full impact of this finding requires a bit of historical context. Before they became specialized sex chromosomes, the X and Y were once an ordinary, identical pair of autosomes like the other 22 pairs of chromosomes humans carry. To maintain genetic diversity and eliminate potentially harmful mutations, autosome pairs swap genes with each other in a process referred to as “crossing over.” Roughly 300 million years ago, a segment of the X stopped crossing over with the Y, causing rapid genetic decay on the Y. Over the next hundreds of millions of years, four more segments, or strata, of the X ceased crossing over with the Y. The resulting gene loss on the Y was so extensive that today, the human Y retains only 19 of the more than 600 genes it once shared with its ancestral autosomal partner.

“The Y was in free fall early on, and genes were lost at an incredibly rapid rate,” says Page. “But then it leveled off, and it’s been doing just fine since.”

How fine? Well, the sequence of the rhesus Y, which was completed with the help of collaborators at the sequencing centers at Washington University School of Medicine and Baylor College of Medicine, shows the chromosome hasn’t lost a single ancestral gene in the past 25 million years. By comparison, the human Y has lost just one ancestral gene in that period, and that loss occurred in a segment that comprises just 3% of the entire chromosome. The finding allows researchers to describe the Y’s evolution as one marked by periods of swift decay followed by strict conservation.

“We’ve been carefully developing this clearcut way of demystifying the evolution of the Y chromosome,” says Page lab researcher Jennifer Hughes, whose earlier work comparing the human and chimpanzee Ys revealed a stable human Y for at least six million years. “Now our empirical data fly in the face of the other theories out there. With no loss of genes on the rhesus Y and one gene lost on the human Y, it’s clear the Y isn’t going anywhere.”

“This paper simply destroys the idea of the disappearing Y chromosome,” adds Page. “I challenge anyone to argue when confronted with this data.”

This work was supported by the National Institutes of Health, the Howard Hughes Medical Institute, and the Charles A. King Trust.

Written by Matt Fearer

David Page’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citation:

“Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes”

Nature, online February 22, 2012

Jennifer F. Hughes (1), Helen Skaletsky (1), Laura G. Brown (1), Tatyana Pyntikova (1), Tina Graves (2), Robert S. Fulton (2), Shannon Dugan (3), Yan Ding (3), Christian J. Buhay (3), Colin Kremitzki (2), Qiaoyan Wang (3), Hua Shen (3), Michael Holder (3), Donna Villasana (3), Lynne V. Nazareth (3), Andrew Cree (3), Laura Courtney (2), Joelle Veizer (2), Holland Kotkiewicz (2), Ting-Jan Cho (1), Natalia Koutseva (1), Steve Rozen (1), Donna M. Muzny (3), Wesley C. Warren (2), Richard A. Gibbs (3), Richard K. Wilson (2), David C. Page (1).

1. Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

2. The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA.

3. Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.

Matt Fearer | Newswise Science News
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>