Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory of the “Rotting” Y Chromosome Dealt a Fatal Blow

23.02.2012
If you were to discover that a fundamental component of human biology has survived virtually intact for the past 25 million years, you’d be quite confident in saying that it is here to stay.

Such is the case for a team of Whitehead Institute scientists, whose latest research on the evolution of the human Y chromosome confirms that the Y—despite arguments to the contrary—has a long, healthy future ahead of it.

Proponents of the so-called rotting Y theory have been predicting the eventual extinction of the Y chromosome since it was first discovered that the Y has lost hundreds of genes over the past 300 million years. The rotting Y theorists have assumed this trend is ongoing, concluding that inevitably, the Y will one day be utterly devoid of its genetic content.

Over the past decade, Whitehead Institute Director David Page and his lab have steadily been churning out research that should have permanently debunked the rotting Y theory, but to no avail.

“For the past 10 years, the one dominant storyline in public discourse about the Y is that it is disappearing,” says Page. “Putting aside the question of whether this ever had a sound scientific basis, the story went viral—fast—and has stayed viral. I can’t give a talk without being asked about the disappearing Y. This idea has been so pervasive that it has kept us from moving on to address the really important questions about the Y.”

To Page, this latest research represents checkmate in the chess match he’s been drawn into against the “rotting Y” theorists. Members of his lab have dealt their fatal blow by sequencing the Y chromosome of the rhesus macaque—an Old World monkey whose evolutionary path diverged from that of humans some 25 million years ago—and comparing it with the sequences of the human and chimpanzee Y chromosomes. The comparison, published this week in the online edition of the journal Nature, reveals remarkable genetic stability on the rhesus and human Ys in the years since their evolutionary split.

Grasping the full impact of this finding requires a bit of historical context. Before they became specialized sex chromosomes, the X and Y were once an ordinary, identical pair of autosomes like the other 22 pairs of chromosomes humans carry. To maintain genetic diversity and eliminate potentially harmful mutations, autosome pairs swap genes with each other in a process referred to as “crossing over.” Roughly 300 million years ago, a segment of the X stopped crossing over with the Y, causing rapid genetic decay on the Y. Over the next hundreds of millions of years, four more segments, or strata, of the X ceased crossing over with the Y. The resulting gene loss on the Y was so extensive that today, the human Y retains only 19 of the more than 600 genes it once shared with its ancestral autosomal partner.

“The Y was in free fall early on, and genes were lost at an incredibly rapid rate,” says Page. “But then it leveled off, and it’s been doing just fine since.”

How fine? Well, the sequence of the rhesus Y, which was completed with the help of collaborators at the sequencing centers at Washington University School of Medicine and Baylor College of Medicine, shows the chromosome hasn’t lost a single ancestral gene in the past 25 million years. By comparison, the human Y has lost just one ancestral gene in that period, and that loss occurred in a segment that comprises just 3% of the entire chromosome. The finding allows researchers to describe the Y’s evolution as one marked by periods of swift decay followed by strict conservation.

“We’ve been carefully developing this clearcut way of demystifying the evolution of the Y chromosome,” says Page lab researcher Jennifer Hughes, whose earlier work comparing the human and chimpanzee Ys revealed a stable human Y for at least six million years. “Now our empirical data fly in the face of the other theories out there. With no loss of genes on the rhesus Y and one gene lost on the human Y, it’s clear the Y isn’t going anywhere.”

“This paper simply destroys the idea of the disappearing Y chromosome,” adds Page. “I challenge anyone to argue when confronted with this data.”

This work was supported by the National Institutes of Health, the Howard Hughes Medical Institute, and the Charles A. King Trust.

Written by Matt Fearer

David Page’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citation:

“Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes”

Nature, online February 22, 2012

Jennifer F. Hughes (1), Helen Skaletsky (1), Laura G. Brown (1), Tatyana Pyntikova (1), Tina Graves (2), Robert S. Fulton (2), Shannon Dugan (3), Yan Ding (3), Christian J. Buhay (3), Colin Kremitzki (2), Qiaoyan Wang (3), Hua Shen (3), Michael Holder (3), Donna Villasana (3), Lynne V. Nazareth (3), Andrew Cree (3), Laura Courtney (2), Joelle Veizer (2), Holland Kotkiewicz (2), Ting-Jan Cho (1), Natalia Koutseva (1), Steve Rozen (1), Donna M. Muzny (3), Wesley C. Warren (2), Richard A. Gibbs (3), Richard K. Wilson (2), David C. Page (1).

1. Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

2. The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA.

3. Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.

Matt Fearer | Newswise Science News
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>