Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theorists Close In on Improved Atomic Property Predictions

15.01.2010
Scientists at the National Institute of Standards and Technology (NIST) and Indiana University (IU) have determined* the most accurate values ever for a fundamental property of the element lithium using a novel approach that may permit scientists to do the same for other atoms in the periodic table.

NIST’s James Sims and IU’s Stanley Hagstrom have calculated four excitation energies for the lithium atom approximately 100 times more accurately than any previous calculations or experimental measurements.

Precise determination of excitation energy—the amount necessary to raise an atom from a base energy level to the next higher—has intrinsic value for fundamental research into atomic behavior, but the success of the method the team employed has implications that go beyond lithium alone.

The theorists have overcome major computational and conceptual hurdles that for decades have prevented scientists from using quantum mechanics to predict electron excitation energies from first principles. Sims first proposed in the late 1960s that such a quantum approach could be possible, but its application to anything more than two electrons required a fiendishly difficult set of calculations that, until recently, was beyond the capacity of even the world’s fastest computers. In 2006 the team used a novel combination of algorithms, extended precision computing and the increase in power brought about by parallel computing to calculate the most accurate values ever for a simple, two-electron hydrogen molecule.**

By making improvements to those algorithms, Sims and Hagstrom now have been able to apply their approach to the significantly more difficult problem of lithium, which has three electrons. Much of the original difficulty with their method stems from the fact that in atoms with more than one electron the mutually repulsive forces among these tiny elementary particles introduces complications that make calculations extremely time-consuming, if not practically impossible.

Sims says that while the lithium calculation is valuable in itself, the deeper import of refining their method is that it should enable the calculation of excitation energies for beryllium, which has four electrons. In turn, this next achievement should enable theorists to predict with greater accuracy values for all of the remaining elements in the second row of the periodic table, from beryllium to neon, and potentially the rest of the periodic table as well. “The mathematical troubles we have with multiple electrons can all be reduced to problems with four electrons,” says Sims, a quantum chemist in the mathematics and computational sciences division. “Once we’ve tackled that, the mathematics for other elements is not any more difficult inherently—there’s just more number-crunching involved.”

To obtain their results, the researchers used 32 parallel processors in a NIST computer cluster, where they are currently working on the calculations for beryllium.

High precision determinations of excitation energies are of interest to scientists and engineers who characterize and model all types of gaseous systems, including plasmas and planetary atmospheres. Other application areas include astrophysics and health physics.

* J.S. Sims and S.A. Hagstrom. Hylleraas-configuration-interaction study of the 2 2S ground state of neutral lithium and the first five excited 2S states. Physical Review A, Nov. 19 2009, 10.1103/PhysRevA.80.052507.

** See “Algorithm Advance Produces Quantum Calculation Record,” NIST Tech Beat, March 16, 2006.

Chad Boutin | Newswise Science News
Further information:
http://www.nist.gov

Further reports about: Atomic Lithium NIST Property excitation energy lithium calculation quantum chemist

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>