Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Theorists Close In on Improved Atomic Property Predictions

Scientists at the National Institute of Standards and Technology (NIST) and Indiana University (IU) have determined* the most accurate values ever for a fundamental property of the element lithium using a novel approach that may permit scientists to do the same for other atoms in the periodic table.

NIST’s James Sims and IU’s Stanley Hagstrom have calculated four excitation energies for the lithium atom approximately 100 times more accurately than any previous calculations or experimental measurements.

Precise determination of excitation energy—the amount necessary to raise an atom from a base energy level to the next higher—has intrinsic value for fundamental research into atomic behavior, but the success of the method the team employed has implications that go beyond lithium alone.

The theorists have overcome major computational and conceptual hurdles that for decades have prevented scientists from using quantum mechanics to predict electron excitation energies from first principles. Sims first proposed in the late 1960s that such a quantum approach could be possible, but its application to anything more than two electrons required a fiendishly difficult set of calculations that, until recently, was beyond the capacity of even the world’s fastest computers. In 2006 the team used a novel combination of algorithms, extended precision computing and the increase in power brought about by parallel computing to calculate the most accurate values ever for a simple, two-electron hydrogen molecule.**

By making improvements to those algorithms, Sims and Hagstrom now have been able to apply their approach to the significantly more difficult problem of lithium, which has three electrons. Much of the original difficulty with their method stems from the fact that in atoms with more than one electron the mutually repulsive forces among these tiny elementary particles introduces complications that make calculations extremely time-consuming, if not practically impossible.

Sims says that while the lithium calculation is valuable in itself, the deeper import of refining their method is that it should enable the calculation of excitation energies for beryllium, which has four electrons. In turn, this next achievement should enable theorists to predict with greater accuracy values for all of the remaining elements in the second row of the periodic table, from beryllium to neon, and potentially the rest of the periodic table as well. “The mathematical troubles we have with multiple electrons can all be reduced to problems with four electrons,” says Sims, a quantum chemist in the mathematics and computational sciences division. “Once we’ve tackled that, the mathematics for other elements is not any more difficult inherently—there’s just more number-crunching involved.”

To obtain their results, the researchers used 32 parallel processors in a NIST computer cluster, where they are currently working on the calculations for beryllium.

High precision determinations of excitation energies are of interest to scientists and engineers who characterize and model all types of gaseous systems, including plasmas and planetary atmospheres. Other application areas include astrophysics and health physics.

* J.S. Sims and S.A. Hagstrom. Hylleraas-configuration-interaction study of the 2 2S ground state of neutral lithium and the first five excited 2S states. Physical Review A, Nov. 19 2009, 10.1103/PhysRevA.80.052507.

** See “Algorithm Advance Produces Quantum Calculation Record,” NIST Tech Beat, March 16, 2006.

Chad Boutin | Newswise Science News
Further information:

Further reports about: Atomic Lithium NIST Property excitation energy lithium calculation quantum chemist

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>