Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The product-friendly preservation of beverages – testing under hygienic conditions

18.04.2016

Pressure change technology – PCT for short – makes it possible to preserve fruit juices as gently as possible and to extract valuable ingredients. Fraunhofer IGB has developed the process through to final industrial application. Apart from the food preservation applications, the experts also use the technology to obtain extracts and active ingredients from plant, microalgae and microbial cells. A research facility for the purpose of testing the technology under strict hygienic conditions is now in operation. This will be presented to specialists at a colloquium on June 21, 2016.

Microorganisms cause the spoilage of fresh foodstuffs. For a longer shelf life, microorganisms must therefore be inactivated or their reproduction must be inhibited. Chemical preservatives, which are mainly used today, may cause allergic reactions; their acceptance as food additives has consequently decreased. Due to greater health and environmental awareness, the requirements relating to the quality of our food have also changed.


At Fraunhofer IGB the preservation of beverages and liquid foodstuffs, and also cell disruption, can be tested under hygienic conditions using the PCT research plant.

Fraunhofer IGB

Today, a growing number of consumers demand safe and, as far as possible, "clean" foodstuffs in their natural state and without artificial additives. As a rule, beverages are currently treated with thermal processes. However, not only the microorganisms are killed by pasteurization and especially by heat sterilization: heat-sensitive and nutritionally relevant ingredients such as vitamins or proteins are also destroyed. And besides this, taste and color are affected.

Pressure change technology (PCT) is a physical process for the product-friendly preservation of liquid foodstuffs. In recent years, the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has investigated the process, which is also called "cold pasteurizing", and has further developed it through to application maturity.

In the EU-funded project "PreserveWine", for example, the addition of sulfur dioxide to the wine was considerably reduced by using PCT. "We have shown that the color of PCT-treated wine is preserved, even over longer periods of time, and that flavor is not affected," says Dr. Ana Lucía Vásquez-Caicedo about the research findings.

Pressure change causes cells to burst

In pressure change technology the liquid to be preserved is enriched and mixed with a chemically inert gas, for example nitrogen or argon. If the pressure is increased to up to 500 bar, the dissolved gas diffuses through the cell membrane into the microorganism cells. If the pressure is then abruptly lowered, the gas – including that within the cells – regains its original gaseous state, thus expanding and causing the cells to burst.

"The process does not require any chemical additives, and since the foodstuffs do not have to be heated, the biological function of the ingredients is fully retained," explains Dr. Ana Lucia Vásquez-Caicedo. A further advantage of the new technology is that, at the same time, it has a conserving effect in two different ways: On the one hand, the microorganisms are destroyed. On the other, the working gas acts as a protective atmosphere and prevents atmospheric oxygen from damaging sensitive ingredients.

PCT research facility under hygienic conditions

On the basis of years of research and project work, Fraunhofer IGB experts have now built a PCT testing facility in which they can investigate the process for the stabilization and preservation of any liquid products and can determine the optimum parameters in each individual case. The facility is located in a cleanroom technical center (Class E cleanroom), so that the investigations take place under hygienic conditions without risk of contaminating the product.

The PCT research facility can treat up to four liters of liquid per minute continuously. The process is suitable for all beverages that are normally pasteurized, i.e. fruit and vegetable juices or concentrates, and also alcoholic beverages, milk products, plant extracts and suspensions containing active substances, e.g. cosmetic and pharmaceutical preparations. Additionally, for basic testing – for example, at a customer’s location – a flexibly configurable and mobile PCT lab plant is currently being constructed.

Cell disruption for the product-friendly release of ingredients

Pressure change technology does indeed destroy the cells, but it does not change their ingredients, so this opens up a further field of application for the technology. Plant or microbial cells can be disrupted to release valuable intracellular metabolites. Fraunhofer IGB researchers have already tested the process for microalgae cells and extracted high-quality fatty acids for dietary supplements and pigments for cosmetics.

"If we then also combine the PCT process with high-pressure extraction, we can obtain omega-3 fatty acids with much greater energy efficiency than previously, yet achieving at least the same quality," Vásquez-Caicedo adds. The high-pressure extraction does not require the use of any solvent. That is good both for the environment and for the preparation of the extracts.

Formal inauguration

On June 21, 2016 the 1st Technical Colloquium "Current and Future Applications of High-Pressure Technologies in the Food Industry" will present current results and future possibilities of this and related high-pressure technologies. The PCT plant will be inaugurated in conjunction with the colloquium, during a subsequent visit of the plant.

For further information and preliminary program www.igb.fraunhofer.de/en/pctcolloquium 

We very much hope that you will include the presentation and demonstration in your events calendar.

You are cordially invited to the inauguration of the plant.
If you are interested please contact us.

Weitere Informationen:

http://www.igb.fraunhofer.de/en/pctcolloquium Program PCT inauguration
http://www.igb.fraunhofer.de/en/press-media/press-releases/2016/the-product-frie... Press release at Fraunhofer IGB website

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>