Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Molecular Breakdance of Seeing

17.11.2015

Our sense of vision is based on highly choreographed, ultrafast molecular motions.

The detection of light by pigments in the retina, called rhodopsin or visual purple, leads to our sense of vision. New experiments by scientists from the Max Planck Institute for the Structure and Dynamics of Matter and the University of Toronto have revealed that the primary photochemical event of this process operates at the fundamental molecular speed limit. These results are reported online in the journal Nature Chemistry today.


Artist's impression of the molecular motion in the retina.

J.M. Harms, MPSD

The retinal chromophore in rhodopsin, also called vitamin A aldehyde, derives its light sensitivity from a repeating chain of single- and double-bonded carbon atoms. The absorption of a photon by retinal causes an extremely short transient weakening of a specific double bond resulting in rotation about that bond.

Pinpointing how fast this so-called chemical isomerization reaction occurs has been difficult, however, and has largely tracked the technological advances in pulsed laser sources. With femtosecond lasers it was shown that the isomerization takes place within 200 femtoseconds (that is 200 millionths of a billionth of a second), and is likely a vibrationally-coherent chemical reaction, meaning the vibrational motions of the retinal chromophore itself help directing the isomerization reaction.

Using a highly sensitive technique from the field of ultrafast spectroscopy called heterodyne-detected transient grating spectroscopy, scientists in the laboratories of Professors R. J. Dwayne Miller (University of Toronto and Max Planck Institute for the Structure and Dynamics of Matter) and Oliver P. Ernst (University of Toronto) revisited the isomerization reaction of bovine rhodopsin with unprecedented sensitivity and temporal resolution.

Such an approach revealed that the isomerization takes place on a timescale of 30 femtoseconds. “It turns out that the primary step of vision is nearly ten times faster than anyone thought,” says Professor Miller, “and the atomic motions are all perfectly choreographed by the protein.”

Temporal analysis of the experimental data revealed these choreographed vibrational dynamics, which are comprised of localized stretching, out-of-plane wagging, and torsional motions. “Such a fast timescale sets distinct limitations on the vibrationally-coherent reaction coordinate,” says Dr. Philip Johnson, lead author of the study, "and this work indicates that it is local to the specific isomerizing double bond.”

“Moreover,” he adds, “the isomerization reaction proceeds within a single period of the relevant torsional vibrational motion. The notion of fully vibrationally-coherent chemical reactions has been around since at least the 1930s, but really hasn't been explicitly observed until now.”

This research was supported by the Max Planck Society, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Excellence Research Chairs program (CERC), and the Canadian Institute for Advanced Research (CIFAR). Professor Miller and Professor Ernst are co-directors of CIFAR’s program Molecular Architecture of Life, which is untangling the details of the complex molecular processes that underlie all living systems.

Contact person:
Prof. Dr. R. J. Dwayne Miller
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6200
dwayne.miller@mpsd.mpg.de

Original publication:
Philip J. M. Johnson, Alexei Halpin, Takefumi Morizumi, Valentyn I. Prokhorenko, Oliver P. Ernst, and R. J. Dwayne Miller, “Local vibrational coherences drive the primary photochemistry of vision,” Nature Chemistry 7, 980–986 (2015), DOI: 10.1038/nchem.2398

Weitere Informationen:

http://dx.doi.org/10.1038/nchem.2398 Original publication
http://www.mpsd.mpg.de/mpsd/research/ard Research group of Prof. Dr. R. J. Dwayne Miller
http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>