Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The early chimp gets the fig

27.10.2014

Wild chimpanzees plan their breakfast time, type and location

How do our close relatives, the chimpanzees, acquire sufficient food when times are lean? By studying wild chimpanzees in the Taï National Park in Côte d’Ivoire researchers of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, provide a clear example of how great apes can acquire extra energy needed to maintain large, costly brains.


Young chimpanzee climbing a fig tree.

© MPI f. Evolutionary Anthropology/ K. Janmaat

They show that chimpanzees make their sleeping nests more en route to breakfast sites containing fruits that are more competed for by other daytime fruit-eaters than other fruits. Moreover, the researchers found that they leave their nest earlier (and often in the dark when leopards are more likely to attack) for these fruits in order to arrive before others, especially when the breakfast sites were far away.

Not all tropical fruits are equally desired by rainforest foragers and some fruit trees get depleted more quickly and carry fruit for shorter periods than others. Researchers from the Max Planck Institute for Evolutionary Anthropology have now investigated whether a ripe-fruit specialist, the chimpanzee, arrived earlier at breakfast sites with very ephemeral and highly sought-after fruit, like figs, than sites with less short-lived fruit that can be more predictably obtained throughout the entire day.

To this aim Karline Janmaat and her colleagues recorded when and where five adult female chimpanzees spent the night and acquired food for a total of 275 full days during three fruit-scarce periods in the west-African Taï National Park in Côte d’Ivoire. The researchers found that chimpanzees left their sleeping nests earlier (often before sunrise when the forest is still dark) when breakfasting on very ephemeral fruits, especially when they were further away. “It was thrilling to see chimpanzee mums and their young carefully treading the forest floor during twilight, behaving skittish and on guard while moving towards their early morning breakfast figs. One fifth of these mornings they left before sunrise and the rest of the forest seemed sound asleep”, says Karline Janmaat. “It got even more exciting when our analyses indicated that they were departing earlier when the figs were far away and that the females were likely making up for travel time to arrive before competitors!”

Furthermore, the researchers found that the females positioned their sleeping nests more in the direction of the next day’s breakfast sites with ephemeral fruit compared to breakfast sites with other fruit. By analysing departure times and nest positioning as a function of fruit type and location, while controlling for more parsimonious explanations such as weather conditions, they found evidence that wild chimpanzees flexibly plan their breakfast time, type and location after weighing multiple disparate pieces of information. “When following chimpanzees in the forest, I have always had the feeling they know much more than me. This study helps to clarify some parts of this feeling; chimpanzees before making their night nests to sleep were as well planning for their breakfast tree the next morning!”, says Christophe Boesch, director of the Department of Primatology at the Max Planck Institute for Evolutionary Anthropology.

The study reveals a cognitive mechanism by which large-brained primates can buffer the effects of seasonal declines in food availability and increased inter-specific competition to facilitate first access to nutritious food. This may have been particularly important for hominoids, like early humans, that specialized on stationary, energy-rich and highly ephemeral food, such as ripe fruit, abandoned meat carcasses or aquatic fauna trapped in receding waters. “Long-term, detailed information from the field can reveal the value of high levels of cognition and behavioural flexibility for efficiently obtaining critical food resources in complex environments. Being able to reveal how environmental complexity can shape cognitive based behaviour is especially exciting”, says co-author Leo Polansky.

Contact 

 

Sandra Jacob

Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone:+49 341 3550-122Fax:+49 341 3550-119

Original publication

 
Karline R. L. Janmaat, Leo Polansky, Simone D. Ban, and Christophe Boesch
Wild chimpanzees plan their breakfast time, type and location

Karline R. L. Janmaat | Max-Planck-Institute
Further information:
http://www.mpg.de/8716153/chimpanzees-plan-breakfast

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>