Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The catch-up or fallback illusion

06.12.2017

Why we accidentally slow-down people on the motorway and lose football matches

Movement and orientation in space is an everyday experience. But it is also a fundamental theoretical problem for science. How does a moving observer perceive the relative movement between two other persons or objects? Despite its everyday relevance, this "perceptual three-body problem" is largely unexplored.


PD Dr. Tobias Meilinger

Max Planck Institute for Biological Cybernetics


An observer sees two runners moving away from her/him. Due to a distortion of perception, the rear appears to be faster than it is in reality – a catching-up illusion arises.

Leibniz-Institut für Wissensmedien / Max Planck Institute for Biological Cybernetics

Dr. Tobias Meilinger from the department of Prof. Bülthoff at the Max Planck Institute (MPI) for Biological Cybernetics and Dr. Bärbel Garsoffky and Prof. Dr. Stephan Schwan from the Leibniz Institute for Knowledge Media (IWM) examined under which circumstances the perception of movement is distorted - and thus an illusion arises.

The experiment: A human being in motion. While the person is walking, she/he watches two other people. One seems to be following the other. The question to the observer: Can the persecutor catch up with the person pursued? The special feature of the study is the combination of two sources of movement – one’s own and the movements of two targets in the environment.

This is when we are talking about a triangular relationship which has a decisive influence on the observer's perception - and thus also on conclusions and decisions. Also in assessing whether the pursuer can catch up. Under certain circumstances, this leads to a distorted perception and thus misjudgment - in other words, an illusion arises.

Caption: An observer sees two runners moving away from her/him. Due to a distortion of perception, the rear appears to be faster than it is in reality – a catching-up illusion arises.

The result of the investigation: To assess the relative movement away from or towards an observer, the perception is often distorted - either a catch-up or a fallback illusion is created. In other words, depending on the observer's own speed, the pursuer seems to either reach the persecuted person or fall back. The scientists showed that these illusions arise from a changed perception of distance. Just as the dashed centerlines on a road seem to be shorter the further away they are, and the longer the closer they are. This also changes the perceived distance between two runners and thus the illusion if and when they catch up with each other.

But how does the illusion affect everyday life? Let's take two examples of perception from driving a car and football games. On the motorway: I'm driving on the left-hand lane of the motorway. Two cars are driving on the right-hand lane. The question: Can I foresee that the rear one wants to change to my lane? My assessment is influenced by the fact that I drive fast myself. I don't notice that the rear car accelerates, because the fallback illusion hides that.

The driver, however, starts to overtake, comes onto my track and slows me down. The distortion of her/his distance to the front car causes me to underestimate its true speed. A similar case on the football field: The striker from my team dashes to the opponent's goal, followed by an opposing player. I myself follow slower and want to play her/him the ball, but I overestimate the speed of the catching-up opponent due to the illusion and therefore I don't pass the ball on, missing the chance to score.

Whether on the street or on the football pitch, distortion of perception can lead to considerable disadvantages in both cases: I have to slow-down, the striker does not get the decisive pass. Possible countermeasures could be to point out to drivers or players that there is such a distortion and thus misjudgment.

Or: teach autonomous cars to take into account human perception distortion to prevent dangerous situations. Or: speed limits on motorways. In this way, the strong differences in speed variances that lead to distortion of perception can be avoided.

Original Publication:
www.nature.com/articles/s41598-017-17158-8

Please read an interview about the study with Tobias Meilinger. (Link)

Contact:
PD Dr. Tobias Meilinger
MPI for Biological Cybernetics
Scientist
Telefon: ++ 49 (0) 7071 601 615
E-Mail: tobias.meilinger@tuebingen.mpg.de

Beate Fülle
MPI for Biological Cybernetics
Head of Communications and Public Relations
Telefon: +49 (0) 7071 601-777
E-mail: presse-kyb@tuebingen.mpg.de

Mira Keßler
Leibniz-Institut für Wissensmedien
Public Relations
Telefon: +49 (0) 7071 979-222
Email: m.kessler@iwm-tuebingen.de

Video Clip:
https://owncloud.tuebingen.mpg.de/index.php/s/Vl0lmnykWMzZuRC

Caption:
Two runners move away from a static observer, keeping the same distance to each other. However, the pursuer seems to catch up and illustrates the uplifting illusion. The videos in the experiment ended after 1.5 seconds and the speed of pursuers and observers varied.
Copyright: Drawing and Video Clip: Tobias Meilinger/Max Planck Institute for Biological Cybernetics

Max-Planck-Institut for Biological Cybernetics
The Max Planck Institute for Biological Cybernetics works in the elucidation of cognitive processes. It employs about 300 people from more than 40 countries and is located at the Max Planck Campus in Tübingen, Germany. The Max Planck Institute for Biological Cybernetics is one of 83 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany and abroad.

Leibniz-Institut für Wissensmedien
The Leibniz-Institut für Wissensmedien (IWM) in Tuebingen analyses teaching and learning with digital technologies. In a multidisciplinary environment, around 80 scientists from cognition, behavioural and social sciences work on solving research questions concerning individual and collective knowledge acquisition in media environments. Since 2009, the IWM and the University of Tuebingen jointly run Germany’s first Leibniz-WissenschaftsCampus “Informational Environments”.
Internet address: www.iwm-tuebingen.de.

Weitere Informationen:

Video: https://owncloud.tuebingen.mpg.de/index.php/s/Vl0lmnykWMzZuRC
Press release: http://tuebingen.mpg.de/en/news-press/press-releases/
MPI for Biological Cybernetics: http://www.kyb.tuebingen.mpg.de
Leibniz-Institut für Wissensmedien: www.iwm-tuebingen.de
http://www.nature.com/articles/s41598-017-17158-8

Public Realtions Office | Max-Planck-Institut für biologische Kybernetik

More articles from Life Sciences:

nachricht Shedding light on the dark proteome with IMB’s newest Adjunct Director
06.12.2017 | Johannes Gutenberg-Universität Mainz

nachricht Study finds variation within species is a critical aspect of biodiversity
06.12.2017 | University of California - Santa Cruz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

Im Focus: Quantum internet goes hybrid

In a recent study, published in Nature, ICFO researchers Nicolas Maring, Pau Farrera, Dr. Kutlu Kutluer, Dr. Margherita Mazzera, and Dr. Georg Heinze led by ICREA Prof. Hugues de Riedmatten, have achieved an elementary "hybrid" quantum network link and demonstrated for the first time photonic quantum communication between two very distinct quantum nodes placed in different laboratories, using a single photon as information carrier.

Today, quantum information networks are ramping up to become a disruptive technology that will provide radically new capabilities for information processing...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

 
Latest News

Two Super-Earths around red dwarf K2-18

06.12.2017 | Physics and Astronomy

Study finds variation within species is a critical aspect of biodiversity

06.12.2017 | Life Sciences

NASA telescope studies quirky comet 45P

06.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>