Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The carbohydrate wind tunnel

01.10.2015

A new method enables researchers to sequence complex sugar molecules for the first time

A team of researchers from Berlin succeeded in an effort to fundamentally improve carbohydrate analysis. With the new method, developed by Kevin Pagel (Free University Berlin and Fritz Haber Institute of the Max Planck Society) and Peter Seeberger (Max Planck Institute of Colloids and Interfaces and Free University Berlin), complex glycans, building blocks of life such as DNA and proteins, can now be sequenced.

The quality control of synthetic carbohydrates is now possible as minimal impurities can be traced faster and more precisely. The new method is essential for the development of novel carbohydrate vaccines, drugs and diagnostics.

Seeberger explains: "The new method is fast, reliable and sensitive. The glycosciences will get a push, comparable to the advances when gene sequencing was first developed."

The structure of carbohydrates is much more complicated than that of genetic material or proteins. Carbohydrate chains can be formed from more than 100 building blocks that can be can be linked together in branched chains and these can have different spatial structures, called anomers. In comparison to that, DNA molecules that consist of 4 building blocks, and proteins that are based on 20 amino acids are comparatively simple.

Seven Nobel prizes were awarded in the glycosciences until 1974. After that, however, the advances in analytical methods did not keep up with those made in genetics. Glycans are important as sugars that cover human and bacterial cell surfaces are an essential part of the immune response and recognition events such as fertilization.

The incredible diversity of carbohydrates (which merely consist of carbon, hydrogen and oxygen) is a general challenge for chemists. Carbohydrate building blocks can link in many different ways. Even simple carbohydrates that have the same number of atoms and the same mass may differ in only one binding angle. These almost identical molecules, called isomers, exhibit very different biological functions. Glucose and galactose for example have an identical formula (C6H12O6 ) but their functions are different.

Chemists use tricks to identify molecules, because most molecules can´t be observed on the atomic level. Hence the molecular mass, electronic or electromagnetic properties are measured. These methods, however, cannot resolve the problems associated with carbohydrate isomers. Carbohydrate molecules consisting of the same number of specific atoms can differ in their composition, connectivity and configuration. So far their differentiation was a laborious and time-consuming task that required large amounts of sample.

The scientists from Berlin and Potsdam take advantage of the different shapes of carbohydrates. Depending on their shape, the molecules require different times to pass through a gas filled tube - comparable to the drag coefficient in a wind tunnel. Kevin Pagel and his colleagues combine this ion mobility measurement with mass spectrometry to find differences in composition, connectivity and configuration. Larger molecules are broken into fragments; during this fragmentation, however, the structural properties of the resulting parts are not altered such that the sum of fragment properties reflect that of the large molecule. This combination method is reminiscent of the Sherlock Holmes quote: “Once you eliminate the impossible, what remains must be the truth.”

Combined with a database, currently under development, and enlarged through the rapidly collaborations of other scientists, this method will be generalized in the future. Once a molecule is entered in the database, automated processes can be used to recognize them.

The new method will enable quality control for synthetic carbohydrates, produced by synthesis robots, adding building blocks like pearls on a string. Until now, impurities were hard to detect at levels below 5 percent while the new carbohydrate “wind tunnel” drastically lowers the sensitivity to 0.1 percent.

Glycobiology - the research field that focused on studying biologically active carbohydrates - is a rapidly developing field and Berlin is doubtlessly one of the global centers.


Contact

Prof. Dr. Peter H. Seeberger
Max Planck Institute of Colloids and Interfaces, Potsdam-Golm
Phone: +49 331 567-9301

Fax: +49 331 567-9102

Email: peter.seeberger@mpikg.mpg.de

Prof. Dr. Kevin Pagel
Institut für Chemie and Biochemie

Freie Universität Berlin
Phone: +49 30 838-72703

Email: kevin.pagel@fu-berlin.de


Original publication
J. Hofmann, H. S. Hahm, P. H. Seeberger & K. Pagel

Identification of carbohydrate anomers using ion mobility–mass spectrometry

Nature, 1 October 2015 (doi:10.1038/nature15388)

Prof. Dr. Peter H. Seeberger | Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Further information:
https://www.mpg.de/9674577/sugar-wind-tunnel

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>