Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen and Washington University researchers discover new approach to treating endometrial cancer

03.09.2008
Inhibitor turns 'off' receptors; stops the growth of endometrial tumors and kills cancer cells

Researchers at the Translational Genomics Research Institute (TGen) today announced a new approach to treating endometrial cancer patients that not only stops the growth of tumors, but kills the cancer cells.

In a potentially major breakthrough, TGen scientists and collaborators at Washington University School of Medicine in St. Louis discovered that introducing a particular inhibitor drug can turn "off'' receptors responsible for the growth of tumors in a significant number of patients with endometrial cancer.

And, they found that the inhibitor drug proved effective even in cancer tumors containing a commonly occurring mutant gene, PTEN, previously associated with resistance to drug treatment.

TGen's findings appear today in a paper published as a priority report by Cancer Research, a Philadelphia-based peer-reviewed journal dedicated to original cancer research.

A clinical trial based on the TGen study will start within the next year.

Dr. Pamela Pollock, an associate investigator in TGen's Cancer and Cell Biology Division and the paper's senior author, led a team that used the latest genome-scanning technology to sequence 116 endometrioid endometrial tumor samples. This work was done in association with Dr. Paul Goodfellow, an expert in endometrial cancer and a professor in the departments of Surgery and of Obstetrics and Gynecology at Washington University.

Pollock and colleagues in May 2007 announced that they had discovered previously unrecognized alterations in the fibroblast growth factor receptor 2 (FGFR2) gene. The altered FGFR2 is present in the cancer cells of nearly 15 percent of women with endometrioid endometrial tumors. These kinds of tumors represent 80 percent of all endometrial cancers.

By introducing a commercially available inhibitor drug, PD173074, TGen researchers showed that they could stop the growth of tumors, and even kill cancer cells, in cases where the tumors contained the altered FGFR2 gene. The altered gene causes the receptors to get stuck in the "on'' position and signal the endometrial cells to grow out of control.

"These findings could accelerate the development of new treatments for endometrial cancer because there are already drugs in clinical trials that inhibit FGFR2 function,'' Pollock said.

Current treatment of endometrial cancer can involve surgical removal of the uterus, radiation and chemotherapy. While many women are successfully treated with these approaches, about 15 percent of those with endometrioid endometrial cancer have persistent or recurring tumors that are resistant to current drug therapies. Mutations in several genes previously have been identified in endometrial tumors, but they have not been suitable drug targets – until now.

"This targeted approach holds great promise for patients with uterine cancer (endometrioid endometrial) tumors that contain the FGFR2 mutation," said TGen physician-in-chief, Dr. Daniel Von Hoff, "and offers yet another powerful example of how genomic medicine is changing the way we look at and treat cancer."

Goodfellow agreed, "The discovery that endometrial cancer cells die when treated with an FGFR2 inhibitor - even when they carry other genetic abnormalities common in uterine cancers - suggests anti-FGFR2 therapies have great potential.''

The researchers' already established ties with the National Cancer Institute, which will assist with the clinical trials, should speed the development of new therapies, Goodfellow said. "Our collaborative group's strong ties with the NCI's Gynecologic Oncology Group will allow us to rapidly take our findings from the lab to patients.''

Endometrial cancer, which invades the inner wall of the uterus, is the most common gynecological cancer in the United States. This year more than 40,000 women will be diagnosed and nearly 7,500 women will die of the disease, according to the American Cancer Society (ACS).

Among women, only breast, lung and colon cancers strike with more frequency. And while endometrial cancer is slow to develop, and often is not detected until after age 60, nearly one in eight women who are diagnosed die within five years, according to the ACS.

Pollock plans to start clinical trials with an FGFR inhibitor in endometrial cancer patients within a year. The trials will be conducted in collaboration with Dr. Matthew Powell, a gynecologic oncologist and assistant professor of Obstetrics and Gynecology at Washington University School of Medicine.

Targeted drug therapy is a relatively new approach to cancer treatment that is based on identifying the abnormalities in cancer cells that cause them to grow uncontrollably. It involves treating tumors with drugs that specifically inhibit the activity of these genetic abnormalities.

This approach of targeted therapy allows oncologists to match the therapy to the specific genetic signature of each patient's tumor, a strategy that has been effective in multiple cancer types, including breast cancer, lung cancer and chronic myelogenous leukemia.

Galen Perry | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>